📄 quasinew.m
字号:
function [x, options, flog, pointlog] = quasinew(f, x, options, gradf, ... varargin)%QUASINEW Quasi-Newton optimization.%% Description% [X, OPTIONS, FLOG, POINTLOG] = QUASINEW(F, X, OPTIONS, GRADF) uses a% quasi-Newton algorithm to find a local minimum of the function F(X)% whose gradient is given by GRADF(X). Here X is a row vector and F% returns a scalar value. The point at which F has a local minimum is% returned as X. The function value at that point is returned in% OPTIONS(8). A log of the function values after each cycle is% (optionally) returned in FLOG, and a log of the points visited is% (optionally) returned in POINTLOG.%% QUASINEW(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional% arguments to be passed to F() and GRADF().%% The optional parameters have the following interpretations.%% OPTIONS(1) is set to 1 to display error values; also logs error% values in the return argument ERRLOG, and the points visited in the% return argument POINTSLOG. If OPTIONS(1) is set to 0, then only% warning messages are displayed. If OPTIONS(1) is -1, then nothing is% displayed.%% OPTIONS(2) is a measure of the absolute precision required for the% value of X at the solution. If the absolute difference between the% values of X between two successive steps is less than OPTIONS(2),% then this condition is satisfied.%% OPTIONS(3) is a measure of the precision required of the objective% function at the solution. If the absolute difference between the% objective function values between two successive steps is less than% OPTIONS(3), then this condition is satisfied. Both this and the% previous condition must be satisfied for termination.%% OPTIONS(9) should be set to 1 to check the user defined gradient% function.%% OPTIONS(10) returns the total number of function evaluations% (including those in any line searches).%% OPTIONS(11) returns the total number of gradient evaluations.%% OPTIONS(14) is the maximum number of iterations; default 100.%% OPTIONS(15) is the precision in parameter space of the line search;% default 1E-2.%% See also% CONJGRAD, GRADDESC, LINEMIN, MINBRACK, SCG%% Copyright (c) Ian T Nabney (1996-2001)% Set up the options.if length(options) < 18 error('Options vector too short')endif(options(14)) niters = options(14);else niters = 100;end% Set up options for line searchline_options = foptions;% Don't need a very precise line searchif options(15) > 0 line_options(2) = options(15);else line_options(2) = 1e-2; % Defaultend% Minimal fractional change in f from Newton step: otherwise do a line searchmin_frac_change = 1e-4; display = options(1);% Next two lines allow quasinew to work with expression stringsf = fcnchk(f, length(varargin));gradf = fcnchk(gradf, length(varargin));% Check gradientsif (options(9)) feval('gradchek', x, f, gradf, varargin{:});endnparams = length(x);fnew = feval(f, x, varargin{:});options(10) = options(10) + 1;gradnew = feval(gradf, x, varargin{:});options(11) = options(11) + 1;p = -gradnew; % Search directionhessinv = eye(nparams); % Initialise inverse Hessian to be identity matrixj = 1;if nargout >= 3 flog(j, :) = fnew; if nargout == 4 pointlog(j, :) = x; endendwhile (j <= niters) xold = x; fold = fnew; gradold = gradnew; x = xold + p; fnew = feval(f, x, varargin{:}); options(10) = options(10) + 1; % This shouldn't occur, but rest of code depends on sd being downhill if (gradnew*p' >= 0) p = -p; if options(1) >= 0 warning('search direction uphill in quasinew'); end end % Does the Newton step reduce the function value sufficiently? if (fnew >= fold + min_frac_change * (gradnew*p')) % No it doesn't % Minimize along current search direction: must be less than Newton step [lmin, line_options] = feval('linemin', f, xold, p, fold, ... line_options, varargin{:}); options(10) = options(10) + line_options(10); options(11) = options(11) + line_options(11); % Correct x and fnew to be the actual search point we have found x = xold + lmin * p; p = x - xold; fnew = line_options(8); end % Check for termination if (max(abs(x - xold)) < options(2) & max(abs(fnew - fold)) < options(3)) options(8) = fnew; return; end gradnew = feval(gradf, x, varargin{:}); options(11) = options(11) + 1; v = gradnew - gradold; vdotp = v*p'; % Skip update to inverse Hessian if fac not sufficiently positive if (vdotp*vdotp > eps*sum(v.^2)*sum(p.^2)) Gv = (hessinv*v')'; vGv = sum(v.*Gv); u = p./vdotp - Gv./vGv; % Use BFGS update rule hessinv = hessinv + (p'*p)/vdotp - (Gv'*Gv)/vGv + vGv*(u'*u); end p = -(hessinv * gradnew')'; if (display > 0) fprintf(1, 'Cycle %4d Function %11.6f\n', j, fnew); end j = j + 1; if nargout >= 3 flog(j, :) = fnew; if nargout == 4 pointlog(j, :) = x; end endend% If we get here, then we haven't terminated in the given number of % iterations.options(8) = fold;if (options(1) >= 0) disp(maxitmess);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -