⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gtmem.m

📁 有关PPCA的计算程序
💻 M
字号:
function [net, options, errlog] = gtmem(net, t, options)%GTMEM	EM algorithm for Generative Topographic Mapping.%%	Description%	[NET, OPTIONS, ERRLOG] = GTMEM(NET, T, OPTIONS) uses the Expectation%	Maximization algorithm to estimate the parameters of a GTM defined by%	a data structure NET. The matrix T represents the data whose%	expectation is maximized, with each row corresponding to a vector.%	It is assumed that the latent data NET.X has been set following a%	call to GTMINIT, for example.    The optional parameters have the%	following interpretations.%%	OPTIONS(1) is set to 1 to display error values; also logs error%	values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then%	only warning messages are displayed.  If OPTIONS(1) is -1, then%	nothing is displayed.%%	OPTIONS(3) is a measure of the absolute precision required of the%	error function at the solution. If the change in log likelihood%	between two steps of the EM algorithm is less than this value, then%	the function terminates.%%	OPTIONS(14) is the maximum number of iterations; default 100.%%	The optional return value OPTIONS contains the final error value%	(i.e. data log likelihood) in OPTIONS(8).%%	See also%	GTM, GTMINIT%%	Copyright (c) Ian T Nabney (1996-2001)% Check that inputs are consistenterrstring = consist(net, 'gtm', t);if ~isempty(errstring)  error(errstring);end% Sort out the optionsif (options(14))  niters = options(14);else  niters = 100;enddisplay = options(1);store = 0;if (nargout > 2)  store = 1;	% Store the error values to return them  errlog = zeros(1, niters);endtest = 0;if options(3) > 0.0  test = 1;	% Test log likelihood for terminationend% Calculate various quantities that remain constant during training[ndata, tdim] = size(t);ND = ndata*tdim;[net.gmmnet.centres, Phi] = rbffwd(net.rbfnet, net.X);Phi = [Phi ones(size(net.X, 1), 1)];PhiT = Phi';[K, Mplus1] = size(Phi);A = zeros(Mplus1, Mplus1);cholDcmp = zeros(Mplus1, Mplus1);% Use a sparse representation for the weight regularizing matrix.if (net.rbfnet.alpha > 0)  Alpha = net.rbfnet.alpha*speye(Mplus1);  Alpha(Mplus1, Mplus1) = 0;end for n = 1:niters   % Calculate responsibilities   [R, act] = gtmpost(net, t);     % Calculate error value if needed   if (display | store | test)      prob = act*(net.gmmnet.priors)';      % Error value is negative log likelihood of data      e = - sum(log(max(prob,eps)));      if store         errlog(n) = e;      end      if display > 0         fprintf(1, 'Cycle %4d  Error %11.6f\n', n, e);      end      if test         if (n > 1 & abs(e - eold) < options(3))            options(8) = e;            return;         else            eold = e;         end      end   end   % Calculate matrix be inverted (Phi'*G*Phi + alpha*I in the papers).   % Sparse representation of G normally executes faster and saves   % memory   if (net.rbfnet.alpha > 0)      A = full(PhiT*spdiags(sum(R)', 0, K, K)*Phi + ...         (Alpha.*net.gmmnet.covars(1)));   else      A = full(PhiT*spdiags(sum(R)', 0, K, K)*Phi);   end   % A is a symmetric matrix likely to be positive definite, so try   % fast Cholesky decomposition to calculate W, otherwise use SVD.   % (PhiT*(R*t)) is computed right-to-left, as R   % and t are normally (much) larger than PhiT.   [cholDcmp singular] = chol(A);   if (singular)      if (display)         fprintf(1, ...            'gtmem: Warning -- M-Step matrix singular, using pinv.\n');      end      W = pinv(A)*(PhiT*(R'*t));   else      W = cholDcmp \ (cholDcmp' \ (PhiT*(R'*t)));   end   % Put new weights into network to calculate responsibilities   % net.rbfnet = netunpak(net.rbfnet, W);   net.rbfnet.w2 = W(1:net.rbfnet.nhidden, :);   net.rbfnet.b2 = W(net.rbfnet.nhidden+1, :);   % Calculate new distances   d = dist2(t, Phi*W);      % Calculate new value for beta   net.gmmnet.covars = ones(1, net.gmmnet.ncentres)*(sum(sum(d.*R))/ND);endoptions(8) = -sum(log(gtmprob(net, t)));if (display >= 0)  disp(maxitmess);end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -