⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 st-thresh.c

📁 用于数据挖掘的分类算法,基于c语言的,一个c4.5分类算法
💻 C
字号:
/*************************************************************************//*									 *//*	Soften thresholds for continuous attributes			 *//*	-------------------------------------------			 *//*									 *//*************************************************************************/#include "defns.i"#include "types.i"#include "extern.i"Boolean *LHSErr,	/*  Does a misclassification occur with this value of an att  */	*RHSErr;	/*  if the below or above threshold branches are taken  */ItemNo	*ThreshErrs;	/*  ThreshErrs[i] is the no. of misclassifications if thresh is i  */float	*CVals;		/*  All values of a continuous attribute  */#define	Below(v,t)	(v <= t + 1E-6)/*************************************************************************//*									 *//*  Soften all thresholds for continuous attributes in tree T		 *//*									 *//*************************************************************************/    SoftenThresh(T)/*  ------------  */    Tree T;{    CVals = (float *) calloc(MaxItem+1, sizeof(float));    LHSErr = (Boolean *) calloc(MaxItem+1, sizeof(Boolean));    RHSErr = (Boolean *) calloc(MaxItem+1, sizeof(Boolean));    ThreshErrs = (ItemNo *) calloc(MaxItem+1, sizeof(ItemNo));    InitialiseWeights();    ScanTree(T, 0, MaxItem);    cfree(ThreshErrs);    cfree(RHSErr);    cfree(LHSErr);    cfree(CVals);}/*************************************************************************//*								  	 *//*  Calculate upper and lower bounds for each test on a continuous	 *//*  attribute in tree T, using data items from Fp to Lp			 *//*								  	 *//*************************************************************************/    ScanTree(T, Fp, Lp)/*  --------  */    Tree T;    ItemNo Fp, Lp;{    short v;    float Val, Se, Limit, Lower, Upper, GreatestValueBelow();    ItemNo i, Kp, Ep, LastI, Errors, BaseErrors;    ClassNo CaseClass, Class1, Class2, Category();    Boolean LeftThresh=false;    Description CaseDesc;    Attribute Att;    void Swap();    /*  Stop when get to a leaf  */    if ( ! T->NodeType ) return;    /*  Group the unknowns together  */    Kp = Group(0, Fp, Lp, T);    /*  Soften a threshold for a continuous attribute  */    Att = T->Tested;    if ( T->NodeType == ThreshContin )    {	printf("\nTest %s <> %g\n", AttName[Att], T->Cut);	Quicksort(Kp+1, Lp, Att, Swap);	ForEach(i, Kp+1, Lp)	{	    /*  See how this item would be classified if its		value were on each side of the threshold  */	    CaseDesc = Item[i];	    CaseClass = Class(CaseDesc);	    Val = CVal(CaseDesc, Att);			    Class1 = Category(CaseDesc, T->Branch[1]);	    Class2 = Category(CaseDesc, T->Branch[2]);	    CVals[i] = Val;	    LHSErr[i] = (Class1 != CaseClass ? 1 : 0);	    RHSErr[i] = (Class2 != CaseClass ? 1 : 0);	}	/*  Set Errors to total errors if take above thresh branch,	    and BaseErrors to errors if threshold has original value  */	Errors = BaseErrors = 0;	ForEach(i, Kp+1, Lp)	{	    Errors += RHSErr[i];	    if ( Below(CVals[i], T->Cut) )	    {		BaseErrors += LHSErr[i];	    }	    else	    {		BaseErrors += RHSErr[i];	    }	}	/*  Calculate standard deviation of the number of errors  */	Se = sqrt( (BaseErrors+0.5) * (Lp-Kp-BaseErrors+0.5) / (Lp-Kp+1) );	Limit = BaseErrors + Se;	Verbosity(1)	{	    printf("\t\t\tBase errors %d, items %d, se=%.1f\n",		   BaseErrors, Lp-Kp, Se);	    printf("\n\tVal <=   Errors\t\t+Errors\n");	    printf("\t         %6d\n", Errors);	}	/*  Set ThreshErrs[i] to the no. of errors if the threshold were i  */	ForEach(i, Kp+1, Lp)	{	    ThreshErrs[i] = Errors = Errors + LHSErr[i] - RHSErr[i];	    if ( i == Lp || CVals[i] != CVals[i+1] )	    {		Verbosity(1)		    printf("\t%6g   %6d\t\t%7d\n",			CVals[i], Errors, Errors - BaseErrors);	    }	}	/*  Choose Lower and Upper so that if threshold were set to	    either, the number of items misclassified would be one	    standard deviation above BaseErrors  */	LastI = Kp+1;	Lower = Min(T->Cut, CVals[LastI]);	Upper = Max(T->Cut, CVals[Lp]);	while ( CVals[LastI+1] == CVals[LastI] ) LastI++;	while ( LastI < Lp )	{	    i = LastI + 1;	    while ( i < Lp && CVals[i+1] == CVals[i] ) i++;	    if ( ! LeftThresh &&		 ThreshErrs[LastI] > Limit &&		 ThreshErrs[i] <= Limit &&		 Below(CVals[i], T->Cut) )	    {		Lower = CVals[i] -			(CVals[i] - CVals[LastI]) * (Limit - ThreshErrs[i]) /			(ThreshErrs[LastI] - ThreshErrs[i]);		LeftThresh = true;	    }	    else	    if ( ThreshErrs[LastI] <= Limit &&		 ThreshErrs[i] > Limit &&		 ! Below(CVals[i], T->Cut) )	    {		Upper = CVals[LastI] +			(CVals[i] - CVals[LastI]) * (Limit - ThreshErrs[LastI]) /			(ThreshErrs[i] - ThreshErrs[LastI]);		if ( Upper < T->Cut ) Upper = T->Cut;	    }	    LastI = i;	}	T->Lower = Lower;	T->Upper = Upper;	Verbosity(1) printf("\n");	printf("\tLower = %g, Upper = %g\n", T->Lower, T->Upper);    }    /*  Recursively scan each branch  */    ForEach(v, 1, T->Forks)    {	Ep = Group(v, Kp+1, Lp, T);	if ( Kp < Ep )	{	    ScanTree(T->Branch[v], Kp+1, Ep);	    Kp = Ep;	}    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -