📄 rsatools.java
字号:
int nInts = n >>> 5;
int nBits = n & 0x1F;
this.intLen -= nInts;
if (nBits == 0)
return;
int bitsInHighWord = BinaryInteger.bitLen(value[offset]);
if (nBits >= bitsInHighWord) {
this.primitiveLeftShift(32 - nBits);
this.intLen--;
} else {
primitiveRightShift(nBits);
}
}
/**
* Left shift this MutableBigInteger n bits.
*/
void leftShift(int n) {
/*
* If there is enough storage space in this MutableBigInteger already
* the available space will be used. Space to the right of the used ints
* in the value array is faster to utilize, so the extra space will be
* taken from the right if possible.
*/
if (intLen == 0)
return;
int nInts = n >>> 5;
int nBits = n & 0x1F;
int bitsInHighWord = BinaryInteger.bitLen(value[offset]);
// If shift can be done without moving words, do so
if (n <= (32 - bitsInHighWord)) {
primitiveLeftShift(nBits);
return;
}
int newLen = intLen + nInts + 1;
if (nBits <= (32 - bitsInHighWord))
newLen--;
if (value.length < newLen) {
// The array must grow
int[] result = new int[newLen];
for (int i = 0; i < intLen; i++)
result[i] = value[offset + i];
setValue(result, newLen);
} else if (value.length - offset >= newLen) {
// Use space on right
for (int i = 0; i < newLen - intLen; i++)
value[offset + intLen + i] = 0;
} else {
// Must use space on left
for (int i = 0; i < intLen; i++)
value[i] = value[offset + i];
for (int i = intLen; i < newLen; i++)
value[i] = 0;
offset = 0;
}
intLen = newLen;
if (nBits == 0)
return;
if (nBits <= (32 - bitsInHighWord))
primitiveLeftShift(nBits);
else
primitiveRightShift(32 - nBits);
}
/**
* A primitive used for division. This method adds in one multiple of the
* divisor a back to the dividend result at a specified offset. It is used
* when qhat was estimated too large, and must be adjusted.
*/
private int divadd(int[] a, int[] result, int offset) {
long carry = 0;
for (int j = a.length - 1; j >= 0; j--) {
long sum = (a[j] & LONG_MASK) + (result[j + offset] & LONG_MASK)
+ carry;
result[j + offset] = (int) sum;
carry = sum >>> 32;
}
return (int) carry;
}
/**
* This method is used for division. It multiplies an n word input a by one
* word input x, and subtracts the n word product from q. This is needed
* when subtracting qhat*divisor from dividend.
*/
private int mulsub(int[] q, int[] a, int x, int len, int offset) {
long xLong = x & LONG_MASK;
long carry = 0;
offset += len;
for (int j = len - 1; j >= 0; j--) {
long product = (a[j] & LONG_MASK) * xLong + carry;
long difference = q[offset] - product;
q[offset--] = (int) difference;
carry = (product >>> 32)
+ (((difference & LONG_MASK) > (((~(int) product) & LONG_MASK))) ? 1
: 0);
}
return (int) carry;
}
/**
* Right shift this MutableBigInteger n bits, where n is less than 32.
* Assumes that intLen > 0, n > 0 for speed
*/
private final void primitiveRightShift(int n) {
int[] val = value;
int n2 = 32 - n;
for (int i = offset + intLen - 1, c = val[i]; i > offset; i--) {
int b = c;
c = val[i - 1];
val[i] = (c << n2) | (b >>> n);
}
val[offset] >>>= n;
}
/**
* Left shift this MutableBigInteger n bits, where n is less than 32.
* Assumes that intLen > 0, n > 0 for speed
*/
private final void primitiveLeftShift(int n) {
int[] val = value;
int n2 = 32 - n;
for (int i = offset, c = val[i], m = i + intLen - 1; i < m; i++) {
int b = c;
c = val[i + 1];
val[i] = (b << n) | (c >>> n2);
}
val[offset + intLen - 1] <<= n;
}
/**
* Adds the contents of two MutableBigInteger objects.The result is placed
* within this MutableBigInteger. The contents of the addend are not
* changed.
*/
void add(MutableBigInteger addend) {
int x = intLen;
int y = addend.intLen;
int resultLen = (intLen > addend.intLen ? intLen : addend.intLen);
int[] result = (value.length < resultLen ? new int[resultLen] : value);
int rstart = result.length - 1;
long sum = 0;
// Add common parts of both numbers
while (x > 0 && y > 0) {
x--;
y--;
sum = (value[x + offset] & LONG_MASK)
+ (addend.value[y + addend.offset] & LONG_MASK)
+ (sum >>> 32);
result[rstart--] = (int) sum;
}
// Add remainder of the longer number
while (x > 0) {
x--;
sum = (value[x + offset] & LONG_MASK) + (sum >>> 32);
result[rstart--] = (int) sum;
}
while (y > 0) {
y--;
sum = (addend.value[y + addend.offset] & LONG_MASK) + (sum >>> 32);
result[rstart--] = (int) sum;
}
if ((sum >>> 32) > 0) { // Result must grow in length
resultLen++;
if (result.length < resultLen) {
int temp[] = new int[resultLen];
for (int i = resultLen - 1; i > 0; i--)
temp[i] = result[i - 1];
temp[0] = 1;
result = temp;
} else {
result[rstart--] = 1;
}
}
value = result;
intLen = resultLen;
offset = result.length - resultLen;
}
/**
* Subtracts the smaller of this and b from the larger and places the result
* into this MutableBigInteger.
*/
int subtract(MutableBigInteger b) {
MutableBigInteger a = this;
int[] result = value;
int sign = a.compare(b);
if (sign == 0) {
reset();
return 0;
}
if (sign < 0) {
MutableBigInteger tmp = a;
a = b;
b = tmp;
}
int resultLen = a.intLen;
if (result.length < resultLen)
result = new int[resultLen];
long diff = 0;
int x = a.intLen;
int y = b.intLen;
int rstart = result.length - 1;
// Subtract common parts of both numbers
while (y > 0) {
x--;
y--;
diff = (a.value[x + a.offset] & LONG_MASK)
- (b.value[y + b.offset] & LONG_MASK)
- ((int) -(diff >> 32));
result[rstart--] = (int) diff;
}
// Subtract remainder of longer number
while (x > 0) {
x--;
diff = (a.value[x + a.offset] & LONG_MASK) - ((int) -(diff >> 32));
result[rstart--] = (int) diff;
}
value = result;
intLen = resultLen;
offset = value.length - resultLen;
normalize();
return sign;
}
/**
* Subtracts the smaller of a and b from the larger and places the result
* into the larger. Returns 1 if the answer is in a, -1 if in b, 0 if no
* operation was performed.
*/
private int difference(MutableBigInteger b) {
MutableBigInteger a = this;
int sign = a.compare(b);
if (sign == 0)
return 0;
if (sign < 0) {
MutableBigInteger tmp = a;
a = b;
b = tmp;
}
long diff = 0;
int x = a.intLen;
int y = b.intLen;
// Subtract common parts of both numbers
while (y > 0) {
x--;
y--;
diff = (a.value[a.offset + x] & LONG_MASK)
- (b.value[b.offset + y] & LONG_MASK)
- ((int) -(diff >> 32));
a.value[a.offset + x] = (int) diff;
}
// Subtract remainder of longer number
while (x > 0) {
x--;
diff = (a.value[a.offset + x] & LONG_MASK) - ((int) -(diff >> 32));
a.value[a.offset + x] = (int) diff;
}
a.normalize();
return sign;
}
/**
* Multiply the contents of two MutableBigInteger objects. The result is
* placed into MutableBigInteger z. The contents of y are not changed.
*/
void multiply(MutableBigInteger y, MutableBigInteger z) {
int xLen = intLen;
int yLen = y.intLen;
int newLen = xLen + yLen;
// Put z into an appropriate state to receive product
if (z.value.length < newLen)
z.value = new int[newLen];
z.offset = 0;
z.intLen = newLen;
// The first iteration is hoisted out of the loop to avoid extra add
long carry = 0;
for (int j = yLen - 1, k = yLen + xLen - 1; j >= 0; j--, k--) {
long product = (y.value[j + y.offset] & LONG_MASK)
* (value[xLen - 1 + offset] & LONG_MASK) + carry;
z.value[k] = (int) product;
carry = product >>> 32;
}
z.value[xLen - 1] = (int) carry;
// Perform the multiplication word by word
for (int i = xLen - 2; i >= 0; i--) {
carry = 0;
for (int j = yLen - 1, k = yLen + i; j >= 0; j--, k--) {
long product = (y.value[j + y.offset] & LONG_MASK)
* (value[i + offset] & LONG_MASK)
+ (z.value[k] & LONG_MASK) + carry;
z.value[k] = (int) product;
carry = product >>> 32;
}
z.value[i] = (int) carry;
}
// Remove leading zeros from product
z.normalize();
}
/**
* Multiply the contents of this MutableBigInteger by the word y. The result
* is placed into z.
*/
void mul(int y, MutableBigInteger z) {
if (y == 1) {
z.copyValue(this);
return;
}
if (y == 0) {
z.clear();
return;
}
// Perform the multiplication word by word
long ylong = y & LONG_MASK;
int[] zval = (z.value.length < intLen + 1 ? new int[intLen + 1]
: z.value);
long carry = 0;
for (int i = intLen - 1; i >= 0; i--) {
long product = ylong * (value[i + offset] & LONG_MASK) + carry;
zval[i + 1] = (int) product;
carry = product >>> 32;
}
if (carry == 0) {
z.offset = 1;
z.intLen = intLen;
} else {
z.offset = 0;
z.intLen = intLen + 1;
zval[0] = (int) carry;
}
z.value = zval;
}
/**
* This method is used for division of an n word dividend by a one word
* divisor. The quotient is placed into quotient. The one word divisor is
* specified by divisor. The value of this MutableBigInteger is the dividend
* at invocation but is replaced by the remainder.
*
* NOTE: The value of this MutableBigInteger is modified by this method.
*/
void divideOneWord(int divisor, MutableBigInteger quotient) {
long divLong = divisor & LONG_MASK;
// Special case of one word dividend
if (intLen == 1) {
long remValue = value[offset] & LONG_MASK;
quotient.value[0] = (int) (remValue / divLong);
quotient.intLen = (quotient.value[0] == 0) ? 0 : 1;
quotient.offset = 0;
value[0] = (int) (remValue - (quotient.value[0] * divLong));
offset = 0;
intLen = (value[0] == 0) ? 0 : 1;
return;
}
if (quotient.value.length < intLen)
quotient.value = new int[intLen];
quotient.offset = 0;
quotient.intLen = intLen;
// Normalize the divisor
int shift = 32 - BinaryInteger.bitLen(divisor);
int rem = value[offset];
long remLong = rem & LONG_MASK;
if (remLong < divLong) {
quotient.value[0] = 0;
} else {
quotient.value[0] = (int) (remLong / divLong);
rem = (int) (remLong - (quotient.value[0] * divLong));
remLong = rem & LONG_MASK;
}
int xlen = intLen;
int[] qWord = new int[2];
while (--xlen > 0) {
long dividendEstimate = (remLong << 32)
| (value[offset + intLen - xlen] & LONG_MASK);
if (dividendEstimate >= 0) {
qWord[0] = (int) (dividendEstimate / divLong);
qWord[1] = (int) (dividendEstimate - (qWord[0] * divLong));
} else {
divWord(qWord, dividendEstimate, divisor);
}
quotient.value[intLen - xlen] = (int) qWord[0];
rem = (int) qWord[1];
remLong = rem & LONG_MASK;
}
// Unnormalize
if (shift > 0)
value[0] = rem %= divisor;
else
value[0] = rem;
intLen = (value[0] == 0) ? 0 : 1;
quotient.normalize();
}
/**
* Calculates the quotient and remainder of this div b and places them in
* the MutableBigInteger objects provided.
*
* Uses Algorithm D in Knuth section 4.3.1. Many optimizations to that
* algorithm have been adapted from the Colin Plumb C library. It special
* cases one word divisors for speed. The contents of a and b are not
* changed.
*
*/
void divide(MutableBigInteger b, MutableBigInteger quotient,
MutableBigInteger rem) {
if (b.intLen == 0)
throw new ArithmeticException("BinaryInteger divide by zero");
// Dividend is zero
if (intLen == 0) {
quotient.intLen = quotient.offset = rem.intLen = rem.offset = 0;
return;
}
int cmp = compare(b);
// Dividend less than divisor
if (cmp < 0) {
quotient.intLen = quotient.offset = 0;
rem.copyValue(this);
return;
}
// Dividend equal to divisor
if (cmp == 0) {
quotient.value[0] = quotient.intLen = 1;
quotient.offset = rem.intLen = rem.offset = 0;
return;
}
quotient.clear();
// Special case one word divisor
if (b.intLen == 1) {
rem.copyValue(this);
rem.divideOneWord(b.value[b.offset], quotient);
return;
}
// Copy divisor value to protect divisor
int[] d = new int[b.intLen];
for (int i = 0; i < b.intLen; i++)
d[i] = b.value[b.offset + i];
int dlen = b.intLen;
// Remainder starts as dividend with space for a leading zero
if (rem.value.length < intLen + 1)
rem.value = new int[intLen + 1];
for (int i = 0; i < intLen; i++)
rem.value[i + 1] = value[i + offset];
rem.intLen = intLen;
rem.offset = 1;
int nlen = rem.intLen;
// Set the quotient size
int limit = nlen - dlen + 1;
if (quotient.value.length < limit) {
quotient.value = new int[limit];
quotient.offset = 0;
}
quotient.intLen = limit;
int[] q = quotient.value;
// D1 normalize the divisor
int shift = 32 - BinaryInteger.bitLen(d[0]);
if (shift > 0) {
// First shift will not grow array
BinaryInteger.primitiveLeftShift(d, dlen, shift);
// But this one might
rem.leftShift(shift);
}
// Must insert leading 0 in rem if its length did not change
if (rem.intLen == nlen) {
rem.offset = 0;
rem.value[0] = 0;
rem.intLen++;
}
int dh = d[0];
long dhLong = dh & LONG_MASK;
int dl = d[1];
int[] qWord = new int[2];
// D2 Initialize j
for (int j = 0; j < limit; j++) {
// D3 Calculate qhat
// estimate qhat
int qhat = 0;
int qrem = 0;
boolean skipCorrection = false;
int nh = rem.value[j + rem.offset];
int nh2 = nh + 0x80000000;
int nm = rem.value[j + 1 + rem.offset];
if (nh == dh) {
qhat = ~0;
qrem = nh + nm;
skipCorrection = qrem + 0x80000000 < nh2;
} else {
long nChunk = (((long) nh) << 32) | (nm & LONG_MASK);
if (nChunk >= 0) {
qhat = (int) (nChunk / dhLong);
qrem = (int) (nChunk - (qhat * dhLong));
} else {
divWord(qWord, nChunk, dh);
qhat = qWord[0];
qrem = qWord[1];
}
}
if (qhat == 0)
continue;
if (!skipCorrection) { // Correct qhat
long nl = rem.value[j + 2 + rem.offset] & LONG_MASK;
long rs = ((qrem & LONG_MASK) << 32) | nl;
long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
if (unsignedLongCompare(estProduct, rs)) {
qhat--;
qrem = (int) ((qrem & LONG_MASK) + dhLong);
if ((qrem & LONG_MASK) >= dhLong) {
estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
rs = ((qrem & LONG_MASK) << 32) | nl;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -