⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mainsvc.asv

📁 这个是支持向量聚类机用matlab编译的主程序和部分子程序
💻 ASV
字号:
%=====================================================================% %  Final Project in Machine Learning%  ----------------------------------%%  Submitted By:%   %      Ofer Pasternak%      Elhanan Borshtain %      Orit Kliper%%  -------------------------%  Support Vector Clustring %  -------------------------%	A non-parametric clustring algorithm based on support vector %	approach.%%	Reference: %	A.Ben-Hur,D.Horn,H.T.Siegelmann and V.Vapnik.%	Support Vector Clustring.%	Journal of Machine Learning Research 2(2001)125-137%%   Parameters:%           %           example_set - integer number coding the wanted Sample set.%           C           - Defines the fraction of points which are allowed%                         to become outliers.%                         (p = 1/CN where N is the the total sampels number).%           qvec        - vector of q values for multiple runs over the chosen sample set.%                         each q value is a different width of the gaussian kernel.%           filename    - a name for a file to hold the results.%	%=====================================================================function [] = MainSVC(example_set,C,qvec,filename);clc;clear;time1=cputime;% start clockticcount_q = 0;% 自己设置的参数 2006.1.7example_set=3;C=500;q=10;    % Samples from a given example set: % seperate the Sample set and the classification vector% also reads the samples number, and dimention[Samples, N, classifications] = ReadData(example_set);if Samples == 0    fprintf('invalid example set\n');    return;  end% Each Sample set is analyzed using different q value, set by qvec.%for q=qvec        % Preforms Support Vector Clustering      [SV,BSV,beta,quad,R] = SVC(Samples,C,q);    if(R == -1) return; end    % Finds the clusters assignments    [clusters_assignments,maj_class, mis_class,nof_samples_per_class_per_cluster] =...        SeperateClusters(Samples,beta,quad,R,q,classifications);        %Maps the Sphere back to the data space     [grids, grids_sizes] = MappingAnalysis(Samples,R,beta,quad,q);    % Shows graphic Results:    ShowResults(Samples,SV,BSV,R,beta,quad,q,clusters_assignments, grids, grids_sizes,classifications,nof_samples_per_class_per_cluster);    count_q = count_q+1;    mis_per_q(count_q) = 100*sum(mis_class)/N;    cluster_per_q(count_q) = max(clusters_assignments);        %save (strcat(filename,'q',num2str(q)));    MisPercentQ=100*sum(mis_class)/N;    ClusterPerQ = max(clusters_assignments);    runtime=cputime-time1;    save SVCresult MisPercentQ  ClusterPerQ clusters_assignments runtime%end% shows Total results varying over q values.%figure;%plot(qvec,mis_per_q);%title('Misclassifications over Ranging Values of q');%xlabel('q');%ylabel('Misclassifications (%)')%figure%plot(qvec,cluster_per_q);%title('Change of the Number of Clusters over Ranging Values of q');%xlabel('q');%ylabel('Number of Clusters');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -