📄 seperateclusters.m
字号:
%=====================================================================
%
% SeperateClusters% ----------------%% Parameters: % Samples - The matrix holds the data points.
% beta - The vector of the Lagrangian multipliers.
% quad - The quadratic part of the distace from the sphere's
% center.
% R - The minimal sphere's radius.
% q - The width of the gaussian kernel.% classification - The apriori classifications for each Data point.
%
% Return Value:
% clusters_assignments -
% A vector of the clusters assignments assigned by the algorithm
% to the data points.
% maj_class - The classifications assigned by the algorithm to each point.% mis_class - The number of errors of the assigned classification against % the apriori classifications.% nof_samples_per_class_per_cluster%
% The sphere is mapped back to data space, where it forms a set
% of contours which enclose the data points.
% These contours are interpeted as clusters boundaries.
%
%=====================================================================
function [clusters_assignments,maj_class, mis_class,nof_samples_per_class_per_cluster] =... SeperateClusters(Samples,beta,quad,R,q,classifications);[attr,N] = size(Samples);% calculates the adjacent matrixadjacent_matrix = FindAdjMatrix(Samples,N,beta,quad,R,q);
% Finds the cluster assignment of each data point clusters_assignments = FindConnectedComponents(adjacent_matrix,N);% end clocktoc% finds the classification of each cluster according to the majority.[maj_class, mis_class,nof_samples_per_class_per_cluster] = Classify(classifications, clusters_assignments);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -