⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svc.m

📁 这个是支持向量聚类机用matlab编译的主程序和部分子程序
💻 M
字号:
%=====================================================================
%
%	SVC - The main function in the project
%  ---%%	Parameters:   %		Samples - Matrix, holds the data points.
%       C       - Parameter defines the fraction of points which %			      are allowed to become outliers.
%                 (p = 1/CN where N is the the total sampels number).%       q		- The width of the gaussian kernel.
%%   Return Values:
%		SV      - A matrix containing the Support vectors.
%		BSV     - a matrix containing the outliers.
%		beta    - Vector of the Lagrangian multipliers.
%		quad    - The quadratic part of the equation for%                 the distance from the sphere's center.
%		R       - The minimal enclosing sphere radius.
%  %	Algorithm:
%		Data points are mapped from data space to a high dimentional
%		feature space, using a Gaussian Kernel.
%		In feature space we search for the minimal sphere that encloses
%		the images of the the data.
%	%=====================================================================
function [SV,BSV,beta,quad,R] = SVC(Samples,C,q)[attr,N] = size(Samples);% Calculates the Kernel Matrix 
% Marcer kernel: here we use Gaussian kernelK = KernelMatrix(Samples,q);% Finds the Lagrangian multipliers, for the given constrainsbeta = SolveLagrangian(N,K,C);% Finds the support vectors and outliers[SV,nof_SV,BSV,nof_BSV] = FindSVandBSV(Samples,beta,C);% Calcultes the radius of the sphere, 
% and the quadratic part of the distance equation from the sphere's center.
[quad,R] = CalcSphereRadius(Samples,SV,nof_SV,beta,K,q);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -