⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 myseperateclusters.m

📁 这个是支持向量聚类机用matlab编译的主程序和部分子程序
💻 M
字号:
function [clusters_assignments] = MySeperateClusters(Samples,beta,quad,R,q)

%=====================================================================
%  对来的程序进行修改,去了对数据的分类估计和比较。
%

%   SeperateClusters
%   ----------------
%
%   Parameters:   
%		Samples         - The matrix holds the data points.

%		beta 	        - The vector of the Lagrangian multipliers.

%		quad	        - The quadratic part of the distace from the sphere's

%					      center.

%		R		        - The minimal sphere's radius.

%       q		        - The width of the gaussian kernel.
%       classification  - The apriori classifications for each Data point.

%

%	Return Value:

%		clusters_assignments -

%		        A vector of the clusters assignments assigned by the algorithm 

%		        to the data points.

%       maj_class - The classifications assigned by the algorithm to each point.
%       mis_class - The number of errors of the assigned classification against 
%                   the apriori classifications.
%       nof_samples_per_class_per_cluster
%

%	The sphere is mapped back to data space, where it forms a set 

%	of contours which enclose the data points.

%	These contours are interpeted as clusters boundaries. 

%

%=====================================================================




[attr,N] = size(Samples);

% calculates the adjacent matrix
adjacent_matrix = FindAdjMatrix(Samples,N,beta,quad,R,q);


% Finds the cluster assignment of each data point 
clusters_assignments = FindConnectedComponents(adjacent_matrix,N);


% end clock
toc

% finds the classification of each cluster according to the majority.
% [maj_class, mis_class,nof_samples_per_class_per_cluster] = Classify(classifications, clusters_assignments);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -