📄 psy.c
字号:
}
}
init++;
}
/************************* End of Initialization *****************************/
switch(lay) {
case 1:
case 2:
for(i=0; i<lay; i++){
/*****************************************************************************
* Net offset is 480 samples (1056-576) for layer 2; this is because one must*
* stagger input data by 256 samples to synchronize psychoacoustic model with*
* filter bank outputs, then stagger so that center of 1024 FFT window lines *
* up with center of 576 "new" audio samples. *
* *
* For layer 1, the input data still needs to be staggered by 256 samples, *
* then it must be staggered again so that the 384 "new" samples are centered*
* in the 1024 FFT window. The net offset is then 576 and you need 448 "new"*
* samples for each iteration to keep the 384 samples of interest centered *
*****************************************************************************/
for(j=0; j<syncsize; j++){
if(j<(syncsize-flush))savebuf[j] = savebuf[j+flush];
else savebuf[j] = *buffer++;
/**window data with HANN window***********************************************/
if(j<BLKSIZE){
wsamp_r[j] = window[j]*((FLOAT) savebuf[j]);
wsamp_i[j] = 0;
}
}
/**Compute FFT****************************************************************/
fft(wsamp_r,wsamp_i,energy,phi);
/*****************************************************************************
* calculate the unpredictability measure, given energy[f] and phi[f] *
*****************************************************************************/
for(j=0; j<HBLKSIZE; j++){
r_prime = 2.0 * r[chn][old][j] - r[chn][oldest][j];
phi_prime = 2.0 * phi_sav[chn][old][j] - phi_sav[chn][oldest][j];
r[chn][new][j] = sqrt((double) energy[j]);
phi_sav[chn][new][j] = phi[j];
temp1=r[chn][new][j] * cos((double) phi[j]) - r_prime * cos((double) phi_prime);
temp2=r[chn][new][j] * sin((double) phi[j]) - r_prime * sin((double) phi_prime);
temp3=r[chn][new][j] + fabs((double)r_prime);
if(temp3 != 0)c[j]=sqrt(temp1*temp1+temp2*temp2)/temp3;
else c[j] = 0;
}
/*only update data "age" pointers after you are done with the second channel */
/*for layer 1 computations, for the layer 2 double computations, the pointers*/
/*are reset automatically on the second pass */
if(lay==2 || chn==1){
if(new==0){new = 1; oldest = 1;}
else {new = 0; oldest = 0;}
if(old==0)old = 1; else old = 0;
}
/*****************************************************************************
* Calculate the grouped, energy-weighted, unpredictability measure, *
* grouped_c[], and the grouped energy. grouped_e[] *
*****************************************************************************/
for(j=1;j<CBANDS;j++){
grouped_e[j] = 0;
grouped_c[j] = 0;
}
grouped_e[0] = energy[0];
grouped_c[0] = energy[0]*c[0];
for(j=1;j<HBLKSIZE;j++){
grouped_e[partition[j]] += energy[j];
grouped_c[partition[j]] += energy[j]*c[j];
}
/*****************************************************************************
* convolve the grouped energy-weighted unpredictability measure *
* and the grouped energy with the spreading function, s[j][k] *
*****************************************************************************/
for(j=0;j<CBANDS;j++){
ecb[j] = 0;
cb[j] = 0;
for(k=0;k<CBANDS;k++){
if(s[j][k] != 0.0){
ecb[j] += s[j][k]*grouped_e[k];
cb[j] += s[j][k]*grouped_c[k];
}
}
if(ecb[j] !=0)cb[j] = cb[j]/ecb[j];
else cb[j] = 0;
}
/*****************************************************************************
* Calculate the required SNR for each of the frequency partitions *
* this whole section can be accomplished by a table lookup *
*****************************************************************************/
for(j=0;j<CBANDS;j++){
if(cb[j]<.05)cb[j]=0.05;
else if(cb[j]>.5)cb[j]=0.5;
tb = -0.434294482*log((double) cb[j])-0.301029996;
bc[j] = tmn[j]*tb + nmt*(1.0-tb);
k = cbval[j] + 0.5;
bc[j] = (bc[j] > bmax[k]) ? bc[j] : bmax[k];
bc[j] = exp((double) -bc[j]*LN_TO_LOG10);
}
/*****************************************************************************
* Calculate the permissible noise energy level in each of the frequency *
* partitions. Include absolute threshold and pre-echo controls *
* this whole section can be accomplished by a table lookup *
*****************************************************************************/
for(j=0;j<CBANDS;j++)
if(rnorm[j] && numlines[j])
nb[j] = ecb[j]*bc[j]/(rnorm[j]*numlines[j]);
else nb[j] = 0;
for(j=0;j<HBLKSIZE;j++){
/*temp1 is the preliminary threshold */
temp1=nb[partition[j]];
temp1=(temp1>absthr[j])?temp1:absthr[j];
/*do not use pre-echo control for layer 2 because it may do bad things to the*/
/* MUSICAM bit allocation algorithm */
if(lay==1){
fthr[j] = (temp1 < lthr[chn][j]) ? temp1 : lthr[chn][j];
temp2 = temp1 * 0.00316;
fthr[j] = (temp2 > fthr[j]) ? temp2 : fthr[j];
}
else fthr[j] = temp1;
lthr[chn][j] = LXMIN*temp1;
}
/*****************************************************************************
* Translate the 512 threshold values to the 32 filter bands of the coder *
*****************************************************************************/
for(j=0;j<193;j += 16){
minthres = 60802371420160.0;
sum_energy = 0.0;
for(k=0;k<17;k++){
if(minthres>fthr[j+k])minthres = fthr[j+k];
sum_energy += energy[j+k];
}
snrtmp[i][j/16] = sum_energy/(minthres * 17.0);
snrtmp[i][j/16] = 4.342944819 * log((double)snrtmp[i][j/16]);
}
for(j=208;j<(HBLKSIZE-1);j += 16){
minthres = 0.0;
sum_energy = 0.0;
for(k=0;k<17;k++){
minthres += fthr[j+k];
sum_energy += energy[j+k];
}
snrtmp[i][j/16] = sum_energy/minthres;
snrtmp[i][j/16] = 4.342944819 * log((double)snrtmp[i][j/16]);
}
/*****************************************************************************
* End of Psychoacuostic calculation loop *
*****************************************************************************/
}
for(i=0; i<32; i++){
if(lay==2)
snr32[i]=(snrtmp[0][i]>snrtmp[1][i])?snrtmp[0][i]:snrtmp[1][i];
else snr32[i]=snrtmp[0][i];
}
break;
case 3:
printf("layer 3 is not currently supported\n");
break;
default:
printf("error, invalid MPEG/audio coding layer: %d\n",lay);
}
/* These mem_free() calls must correspond with the mem_alloc() calls */
/* used at the beginning of this function to simulate "automatic" */
/* variables placed on the stack. */
mem_free((void **) &grouped_c);
mem_free((void **) &grouped_e);
mem_free((void **) &nb);
mem_free((void **) &cb);
mem_free((void **) &ecb);
mem_free((void **) &bc);
mem_free((void **) &wsamp_r);
mem_free((void **) &wsamp_i);
mem_free((void **) &phi);
mem_free((void **) &energy);
mem_free((void **) &c);
mem_free((void **) &fthr);
mem_free((void **) &snrtmp);
}
/******************************************************************************
routine to read in absthr table from a file.
******************************************************************************/
void read_absthr(float *absthr, long int table)
{
FILE *fp;
long i,j,index;
float a;
char t[80], *ta = "absthr_0";
switch(table){
case 0 : ta[7] = '0';
break;
case 1 : ta[7] = '1';
break;
case 2 : ta[7] = '2';
break;
default : printf("absthr table: Not valid table number\n");
}
if(!(fp = OpenTableFile(ta) ) ){
printf("Please check %s table\n", ta);
exit(0);
}
fgets(t, 150, fp);
sscanf(t, "table %ld", &index);
if(index != table){
printf("error in absthr table %s",ta);
exit(0);
}
for(j=0; j<HBLKSIZE; j++){
fgets(t,80,fp);
sscanf(t,"%f", &a);
absthr[j] = a;
}
fclose(fp);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -