📄 tonal.c
字号:
mem_free((void **) &sample);
mem_free((void **) &spike);
}
/**********************************************************************
*
* This module implements the psychoacoustic model I for the
* MPEG encoder layer I. It uses simplified tonal and noise masking
* threshold analysis to generate SMR for the encoder bit allocation
* routine.
*
**********************************************************************/
/****************************************************************
*
* Fast Fourier transform of the input samples.
*
****************************************************************/
void I_f_f_t(sample, power) /* this function calculates */
double FAR sample[FFT_SIZE/2]; /* an FFT analysis for the */
mask FAR power[HAN_SIZE/2]; /* freq. domain */
{
int i,j,k,L,l=0;
int ip, le, le1;
double t_r, t_i, u_r, u_i;
static int M, MM1, init = 0, N;
double *x_r, *x_i, *energy;
static int *rev;
static double *w_r, *w_i;
x_r = (double *) mem_alloc(sizeof(DFFT2), "x_r");
x_i = (double *) mem_alloc(sizeof(DFFT2), "x_i");
energy = (double *) mem_alloc(sizeof(DFFT2), "energy");
for(i=0;i<FFT_SIZE/2;i++) x_r[i] = x_i[i] = energy[i] = 0;
if(!init){
rev = (int *) mem_alloc(sizeof(IFFT2), "rev");
w_r = (double *) mem_alloc(sizeof(D9), "w_r");
w_i = (double *) mem_alloc(sizeof(D9), "w_i");
M = 9;
MM1 = 8;
N = FFT_SIZE/2;
for(L=0;L<M;L++){
le = 1 << (M-L);
le1 = le >> 1;
w_r[L] = cos(PI/le1);
w_i[L] = -sin(PI/le1);
}
for(i=0;i<FFT_SIZE/2;rev[i] = l,i++) for(j=0,l=0;j<9;j++){
k=(i>>j) & 1;
l |= (k<<(8-j));
}
init = 1;
}
memcpy( (char *) x_r, (char *) sample, sizeof(double) * FFT_SIZE/2);
for(L=0;L<MM1;L++){
le = 1 << (M-L);
le1 = le >> 1;
u_r = 1;
u_i = 0;
for(j=0;j<le1;j++){
for(i=j;i<N;i+=le){
ip = i + le1;
t_r = x_r[i] + x_r[ip];
t_i = x_i[i] + x_i[ip];
x_r[ip] = x_r[i] - x_r[ip];
x_i[ip] = x_i[i] - x_i[ip];
x_r[i] = t_r;
x_i[i] = t_i;
t_r = x_r[ip];
x_r[ip] = x_r[ip] * u_r - x_i[ip] * u_i;
x_i[ip] = x_i[ip] * u_r + t_r * u_i;
}
t_r = u_r;
u_r = u_r * w_r[L] - u_i * w_i[L];
u_i = u_i * w_r[L] + t_r * w_i[L];
}
}
for(i=0;i<N;i+=2){
ip = i + 1;
t_r = x_r[i] + x_r[ip];
t_i = x_i[i] + x_i[ip];
x_r[ip] = x_r[i] - x_r[ip];
x_i[ip] = x_i[i] - x_i[ip];
x_r[i] = t_r;
x_i[i] = t_i;
energy[i] = x_r[i] * x_r[i] + x_i[i] * x_i[i];
}
for(i=0;i<FFT_SIZE/2;i++) if(i<rev[i]){
t_r = energy[i];
energy[i] = energy[rev[i]];
energy[rev[i]] = t_r;
}
for(i=0;i<HAN_SIZE/2;i++){ /* calculate power */
if(energy[i] < 1E-20) energy[i] = 1E-20; /* density spectrum */
power[i].x = 10 * log10(energy[i]) + POWERNORM;
power[i].next = STOP;
power[i].type = FALSE;
}
mem_free((void **) &x_r);
mem_free((void **) &x_i);
mem_free((void **) &energy);
}
/****************************************************************
*
* Window the incoming audio signal.
*
****************************************************************/
void I_hann_win(sample) /* this function calculates a */
double FAR sample[FFT_SIZE/2]; /* Hann window for PCM (input) */
{ /* samples for a 512-pt. FFT */
register int i;
register double sqrt_8_over_3;
static int init = 0;
static double FAR *window;
if(!init){ /* calculate window function for the Fourier transform */
window = (double FAR *) mem_alloc(sizeof(DFFT2), "window");
sqrt_8_over_3 = pow(8.0/3.0, 0.5);
for(i=0;i<FFT_SIZE/2;i++){
/* Hann window formula */
window[i]=sqrt_8_over_3*0.5*(1-cos(2.0*PI*i/(FFT_SIZE/2)))/(FFT_SIZE/2);
}
init = 1;
}
for(i=0;i<FFT_SIZE/2;i++) sample[i] *= window[i];
}
/*******************************************************************
*
* This function finds the maximum spectral component in each
* subband and return them to the encoder for time-domain threshold
* determination.
*
*******************************************************************/
#ifndef LONDON
void I_pick_max(power, spike)
double FAR spike[SBLIMIT];
mask FAR power[HAN_SIZE/2];
{
double max;
int i,j;
/* calculate the spectral component in each subband */
for(i=0;i<HAN_SIZE/2;spike[i>>3] = max, i+=8)
for(j=0, max = DBMIN;j<8;j++) max = (max>power[i+j].x) ? max : power[i+j].x;
}
#else
void I_pick_max(power, spike)
double FAR spike[SBLIMIT];
mask FAR power[HAN_SIZE];
{
double sum;
int i,j;
for(i=0;i<HAN_SIZE/2;spike[i>>3] = 10.0*log10(sum), i+=8)
/* calculate the */
for(j=0, sum = pow(10.0,0.1*DBMIN);j<8;j++) /* sum of spectral */
sum += pow(10.0,0.1*power[i+j].x); /* component in each */
} /* subband from bound */
#endif
/****************************************************************
*
* This function labels the tonal component in the power
* spectrum.
*
****************************************************************/
void I_tonal_label(power, tone) /* this function extracts */
mask FAR power[HAN_SIZE/2]; /* (tonal) sinusoidals from */
int *tone; /* the spectrum */
{
int i,j, last = LAST, first, run;
double max;
int last_but_one= LAST;
*tone = LAST;
for(i=2;i<HAN_SIZE/2-6;i++){
if(power[i].x>power[i-1].x && power[i].x>=power[i+1].x){
power[i].type = TONE;
power[i].next = LAST;
if(last != LAST) power[last].next = i;
else first = *tone = i;
last = i;
}
}
last = LAST;
first = *tone;
*tone = LAST;
while(first != LAST){ /* conditions for the tonal */
if(first<3 || first>250) run = 0; /* otherwise k+/-j will be out of bounds*/
else if(first<63) run = 2; /* components in layer I, which */
else if(first<127) run = 3; /* are the boundaries for calc. */
else run = 6; /* the tonal components */
max = power[first].x - 7;
for(j=2;j<=run;j++) /* after calc. of tonal components, set to loc.*/
if(max < power[first-j].x || max < power[first+j].x){ /* max */
power[first].type = FALSE;
break;
}
if(power[first].type == TONE){ /* extract tonal components */
int help=first;
if(*tone == LAST) *tone = first;
while((power[help].next!=LAST)&&(power[help].next-first)<=run)
help=power[help].next;
help=power[help].next;
power[first].next=help;
if((first-last)<=run){
if(last_but_one != LAST) power[last_but_one].next=first;
}
if(first>1 && first<255){ /* calculate the sum of the */
double tmp; /* powers of the components */
tmp = add_db(power[first-1].x, power[first+1].x);
power[first].x = add_db(power[first].x, tmp);
}
for(j=1;j<=run;j++){
power[first-j].x = power[first+j].x = DBMIN;
power[first-j].next = power[first+j].next = STOP; /*dpwe: 2nd was .x*/
power[first-j].type = power[first+j].type = FALSE;
}
last_but_one=last;
last = first;
first = power[first].next;
}
else {
int ll;
if(last == LAST) ; /* *tone = power[first].next; dpwe */
else power[last].next = power[first].next;
ll = first;
first = power[first].next;
power[ll].next = STOP;
}
}
}
/****************************************************************
*
* This function finds the minimum masking threshold and
* return the value to the encoder.
*
****************************************************************/
void I_minimum_mask(ltg,ltmin)
g_thres FAR *ltg;
double FAR ltmin[SBLIMIT];
{
double min;
int i,j;
j=1;
for(i=0;i<SBLIMIT;i++)
if(j>=sub_size-1) /* check subband limit, and */
ltmin[i] = ltg[sub_size-1].hear; /* calculate the minimum masking */
else { /* level of LTMIN for each subband*/
min = ltg[j].x;
while(ltg[j].line>>3 == i && j < sub_size){
if (min>ltg[j].x) min = ltg[j].x;
j++;
}
ltmin[i] = min;
}
}
/*****************************************************************
*
* This procedure is called in musicin to pick out the
* smaller of the scalefactor or threshold.
*
*****************************************************************/
void I_smr(ltmin, spike, scale)
double FAR spike[SBLIMIT], scale[SBLIMIT], ltmin[SBLIMIT];
{
int i;
double max;
for(i=0;i<SBLIMIT;i++){ /* determine the signal */
max = 20 * log10(scale[i] * 32768) - 10; /* level for each subband */
if(spike[i]>max) max = spike[i]; /* for the scalefactor */
max -= ltmin[i];
ltmin[i] = max;
}
}
/****************************************************************
*
* This procedure calls all the necessary functions to
* complete the psychoacoustic analysis.
*
****************************************************************/
void I_Psycho_One(buffer, scale, ltmin, fr_ps)
short FAR buffer[2][1152];
double FAR scale[2][SBLIMIT], ltmin[2][SBLIMIT];
frame_params *fr_ps;
{
int stereo = fr_ps->stereo;
the_layer info = fr_ps->header;
int k,i, tone=0, noise=0;
static char init = 0;
static int off[2] = {256,256};
double *sample;
DSBL *spike;
static D640 *fft_buf;
static mask_ptr FAR power;
static g_ptr FAR ltg;
sample = (double *) mem_alloc(sizeof(DFFT2), "sample");
spike = (DSBL *) mem_alloc(sizeof(D2SBL), "spike");
/* call functions for critical boundaries, freq. */
if(!init){ /* bands, bark values, and mapping */
fft_buf = (D640 *) mem_alloc(sizeof(D640) * 2, "fft_buf");
power = (mask_ptr FAR ) mem_alloc(sizeof(mask) * HAN_SIZE/2, "power");
if (info->version == MPEG_AUDIO_ID) {
read_cbound(info->lay, info->sampling_frequency);
read_freq_band(<g, info->lay, info->sampling_frequency);
} else {
read_cbound(info->lay, info->sampling_frequency + 4);
read_freq_band(<g, info->lay, info->sampling_frequency + 4);
}
make_map(power,ltg);
for(i=0;i<640;i++) fft_buf[0][i] = fft_buf[1][i] = 0;
init = 1;
}
for(k=0;k<stereo;k++){ /* check PCM input for a block of */
for(i=0;i<384;i++) /* 384 samples for a 512-pt. FFT */
fft_buf[k][(i+off[k])%640]= (double) buffer[k][i]/SCALE;
for(i=0;i<FFT_SIZE/2;i++)
sample[i] = fft_buf[k][(i+448+off[k])%640];
off[k] += 384;
off[k] %= 640;
/* call functions for windowing PCM samples, */
I_hann_win(sample); /* location of spectral components in each */
for(i=0;i<HAN_SIZE/2;i++) power[i].x = DBMIN; /* subband with */
I_f_f_t(sample, power); /* labeling, locate remaining */
I_pick_max(power, &spike[k][0]); /* non-tonal sinusoidals, */
I_tonal_label(power, &tone); /* reduce noise & tonal com., */
noise_label(power, &noise, ltg); /* find global & minimal */
subsampling(power, ltg, &tone, &noise); /* threshold, and sgnl- */
threshold(power, ltg, &tone, &noise, /* to-mask ratio */
bitrate[info->version][info->lay-1][info->bitrate_index]/stereo);
I_minimum_mask(ltg, <min[k][0]);
I_smr(<min[k][0], &spike[k][0], &scale[k][0]);
}
mem_free((void **) &sample);
mem_free((void **) &spike);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -