📄 machine learning textbook introduction to machine learning (ethem alpaydin).htm
字号:
<LI>10.9.1 Optimal Separating Hyperplane 218
<LI>10.9.2 The Nonseparable Case: Soft Margin Hyperplane 221
<LI>10.9.3 Kernel Functions 223
<LI>10.9.4 Support Vector Machines for Regression 225 </LI></UL>
<LI>10.10 Notes 227
<LI>10.11 Exercises 227
<LI>10.12 References 228 </LI></UL>
<LI><B>11 Multilayer Perceptrons 229</B>
<UL>
<LI>11.1 Introduction 229
<UL>
<LI>11.1.1 Understanding the Brain 230
<LI>11.1.2 Neural Networks as a Paradigm for Parallel Processing 231
</LI></UL>
<LI>11.2 The Perceptron 233
<LI>11.3 Training a Perceptron 236
<LI>11.4 Learning Boolean Functions 239
<LI>11.5 Multilayer Perceptrons 241
<LI>11.6 MLP as a Universal Approximator 244
<LI>11.7 Backpropagation Algorithm 245
<UL>
<LI>11.7.1 Nonlinear Regression 246
<LI>11.7.2 Two-Class Discrimination 248
<LI>11.7.3 Multiclass Discrimination 250
<LI>11.7.4 Multiple Hidden Layers 252 </LI></UL>
<LI>11.8 Training Procedures 252
<UL>
<LI>11.8.1 Improving Convergence 252
<UL>
<LI>Momentum 253
<LI>Adaptive Learning Rate 253 </LI></UL>
<LI>11.8.2 Overtraining 253
<LI>11.8.3 Structuring the Network 254
<LI>11.8.4 Hints 257 </LI></UL>
<LI>11.9 Tuning the Network Size 259
<LI>11.10 Bayesian View of Learning 262
<LI>11.11 Dimensionality Reduction 263
<LI>11.12 Learning Time 266
<UL>
<LI>11.12.1 Time Delay Neural Networks 266
<LI>11.12.2 Recurrent Networks 267 </LI></UL>
<LI>11.13 Notes 268
<LI>11.14 Exercises 270
<LI>11.15 References 271 </LI></UL>
<LI><B>12 Local Models 275</B>
<UL>
<LI>12.1 Introduction 275
<LI>12.2 Competitive Learning 276
<UL>
<LI>12.2.1 Online <I>k</I>-Means 276
<LI>12.2.2 Adaptive Resonance Theory 281
<LI>12.2.3 Self-Organizing Maps 282 </LI></UL>
<LI>12.3 Radial Basis Functions 284
<LI>12.4 Incorporating Rule-Based Knowledge 290
<LI>12.5 Normalized Basis Functions 291
<LI>12.6 Competitive Basis Functions 293
<LI>12.7 Learning Vector Quantization 296
<LI>12.8 Mixture of Experts 296
<UL>
<LI>12.8.1 Cooperative Experts 299
<LI>12.8.2 Competitive Experts 300 </LI></UL>
<LI>12.9 Hierarchical Mixture of Experts 300
<LI>12.10 Notes 301
<LI>12.11 Exercises 302
<LI>12.12 References 302 </LI></UL>
<LI><B>13 Hidden Markov Models 305</B>
<UL>
<LI>13.1 Introduction 305
<LI>13.2 Discrete Markov Processes 306
<LI>13.3 Hidden Markov Models 309
<LI>13.4 Three Basic Problems of HMMs 311
<LI>13.5 Evaluation Problem 311
<LI>13.6 Finding the State Sequence 315
<LI>13.7 Learning Model Parameters 317
<LI>13.8 Continuous Observations 320
<LI>13.9 The HMM with Input 321
<LI>13.10 Model Selection in HMM 322
<LI>13.11 Notes 323
<LI>13.12 Exercises 325
<LI>13.13 References 325 </LI></UL>
<LI><B>14 Assessing and Comparing Classification Algorithms 327</B>
<UL>
<LI>14.1 Introduction 327
<LI>14.2 Cross-Validation and Resampling Methods 330
<UL>
<LI>14.2.1 <I>K</I>-Fold Cross-Validation 331
<LI>14.2.2 5x2 Cross-Validation 331
<LI>14.2.3 Bootstrapping 332 </LI></UL>
<LI>14.3 Measuring Error 333
<LI>14.4 Interval Estimation 334
<LI>14.5 Hypothesis Testing 338
<LI>14.6 Assessing a Classification Algorithm's Performance 339
<UL>
<LI>14.6.1 Binomial Test 340
<LI>14.6.2 Approximate Normal Test 341
<LI>14.6.3 Paired <I>t</I> Test 341 </LI></UL>
<LI>14.7 Comparing Two Classification Algorithms 341
<UL>
<LI>14.7.1 McNemar's Test 342
<LI>14.7.2 <I>K</I>-Fold Cross-Validated Paired <I>t</I> Test 342
<LI>14.7.3 5x2 cv Paired <I>t</I> Test 343
<LI>14.7.4 5x2 cv Paired <I>F</I> Test 344 </LI></UL>
<LI>14.8 Comparing Multiple Classification Algorithms: Analysis of Variance
345
<LI>14.9 Notes 348
<LI>14.10 Exercises 349
<LI>14.11 References 350 </LI></UL>
<LI><B>15 Combining Multiple Learners 351</B>
<UL>
<LI>15.1 Rationale 351
<LI>15.2 Voting 354
<LI>15.3 Error-Correcting Output Codes 357
<LI>15.4 Bagging 360
<LI>15.5 Boosting 360
<LI>15.6 Mixture of Experts Revisited 363
<LI>15.7 Stacked Generalization 364
<LI>15.8 Cascading 366
<LI>15.9 Notes 368
<LI>15.10 Exercises 369
<LI>15.11 References 370 </LI></UL>
<LI><B>16 Reinforcement Learning 373</B>
<UL>
<LI>16.1 Introduction 373
<LI>16.2 Single State Case: <I>K</I>-Armed Bandit 375
<LI>16.3 Elements of Reinforcement Learning 376
<LI>16.4 Model-Based Learning 379
<UL>
<LI>16.4.1 Value Iteration 379
<LI>16.4.2 Policy Iteration 380 </LI></UL>
<LI>16.5 Temporal Difference Learning 380
<UL>
<LI>16.5.1 Exploration Strategies 381
<LI>16.5.2 Deterministic Rewards and Actions 382
<LI>16.5.3 Nondeterministic Rewards and Actions 383
<LI>16.5.4 Eligibility Traces 385 </LI></UL>
<LI>16.6 Generalization 387
<LI>16.7 Partially Observable States 389
<LI>16.8 Notes 391
<LI>16.9 Exercises 393
<LI>16.10 References 394 </LI></UL>
<LI><B>A Probability 397</B>
<UL>
<LI>A.1 Elements of Probability 397
<UL>
<LI>A.1.1 Axioms of Probability 398
<LI>A.1.2 Conditional Probability 398 </LI></UL>
<LI>A.2 Random Variables 399
<UL>
<LI>A.2.1 Probability Distribution and Density Functions 399
<LI>A.2.2 Joint Distribution and Density Functions 400
<LI>A.2.3 Conditional Distributions 400
<LI>A.2.4 Bayes' Rule 401
<LI>A.2.5 Expectation 401
<LI>A.2.6 Variance 402
<LI>A.2.7 Weak Law of Large Numbers 403 </LI></UL>
<LI>A.3 Special Random Variables 403
<UL>
<LI>A.3.1 Bernoulli Distribution 403
<LI>A.3.2 Binomial Distribution 404
<LI>A.3.3 Multinomial Distribution 404
<LI>A.3.4 Uniform Distribution 404
<LI>A.3.5 Normal (Gaussian) Distribution 405
<LI>A.3.6 Chi-Square Distribution 406
<LI>A.3.7 <I>t</I> Distribution 407
<LI>A.3.8 <I>F</I> Distribution 407 </LI></UL>
<LI>A.4 References 407 </LI></UL>
<LI><A
href="http://mitpress.mit.edu/books/chapters/0262012111index1.pdf">Index
409</A> </LI></UL>
<P><A name=revs><B>Reviews:</B></A>
<UL>
<LI><A
href="http://www.reviews.com/review/review_review.cfm?review_id=130914">ACM
Computing Reviews (2005) by L. State</A> <A
href="http://www.cmpe.boun.edu.tr/~ethem/i2ml/acm-review.txt">(text copy)</A>
<LI><A
href="http://www.amazon.com/exec/obidos/tg/detail/-/0262012111?v=glance">Amazon
(US) reviews</A>
<LI><A href="http://chemeducator.org/bibs/0010002/1020163mr.htm">The Chemical
Educator Vol 10:2 (2005) by H Cartwright</A> <A
href="http://www.cmpe.boun.edu.tr/~ethem/i2ml/1020163mr.htm">(html copy)</A>
<LI><A href="http://www.elsevier.com/locate/jmp">Journal of Mathematical
Psychology Vol 49 (2005) 423-424 Telegraphic review by R A Chechile</A> <A
href="http://www.cmpe.boun.edu.tr/~ethem/i2ml/j_mathpsyche_rev.pdf">(pdf
copy)</A>
<LI><A
href="http://journals.cambridge.org/action/displayIssue?jid=KER&volumeId=20&issueId=04">The
Knowledge Engineering Review Vol 20:4 (2006) 431-433 by S Parsons</A> <A
href="http://www.cmpe.boun.edu.tr/~ethem/i2ml/ker_review.pdf">(pdf copy)</A>
<LI><A
href="http://journals.cambridge.org/action/displayIssue?jid=ROB&volumeId=24&issueId=01#">Robotica
Vol 24:1 (2006) 143-144 by G F Page</A> <A
href="http://www.cmpe.boun.edu.tr/~ethem/i2ml/robotica06_rev.pdf">(pdf
copy)</A> </LI></UL>
<P><A name=courses><B>Courses:</B></A> The book is used in the following
courses, either as the main textbook, or as a reference book. I will be happy to
be told of others.
<UL>
<LI><B>Textbook:</B>
<UL>
<LI><A href="http://www.cs.toronto.edu/~bonner/courses/2005f/csc411/">A
Bonner CSC 411 (Fall 2005) U Toronto at Mississauga (CA)</A>
<LI><A
href="http://140.122.185.120/Courses/2006S-Machine%20Learning%20&%20Data%20Mining/MLDM_main_2006S.htm">B
Chen MLDM (Spring 2006) National Taiwan Normal U (TW)</A>
<LI><A href="http://www.ittc.ku.edu/~xwchen/machinelearning.htm">X-w Chen
EECS 700 (Fall 2006) U Kansas (US)</A>
<LI><A
href="http://john.cs.olemiss.edu/~ychen/courses/ENGR691F06/index.html">Y
Chen ENGR 691/692 (Fall 2006) U Mississippi (US)</A>
<LI><A
href="http://www.postech.ac.kr/~seungjin/courses/ml/2006/handouts/handout1.pdf">S
Choi EECE 515 (Spring 2006) Pohang U of Sci and Tech (POSTECH) (KR)</A>
<LI><A href="http://www.cs.williams.edu/~andrea/cs374/">A Danyluk CS374
(2005) Williams College (US)</A>
<LI><A
href="http://divcom.otago.ac.nz/infosci/courses/homepages/info411/">Da Deng
INFO 411 (2006) U Otago (NZ)</A>
<LI><A
href="http://users.wmin.ac.uk/~dracopd/DOCUM/courses/2ait608/ait608.html">D
C Dracopoulos 2AIT608 (Spring 2006) U Westminster (UK)</A>
<LI><A href="http://www.cs.rutgers.edu/~elgammal/classes/cs536/cs536.html">A
Elgammal 198:536 (Fall 2005) Rutgers U (US)</A>
<LI><A href="http://www.cs.ualberta.ca/~greiner/C-466/">R Greiner C466/551
(2005) UAlberta (CA)</A>
<LI><A href="http://www.cse.ucsc.edu/classes/cmps242/Fall05/">D Helmbold
CMPS 242 (Fall 2005) UC Santa Cruz (US)</A>
<LI><A href="http://gaia.ecs.csus.edu/~mei/219/cs219.html">M Lu CSc 219
(Fall 2006) Cal State Sacramento (US)</A>
<LI><A
href="http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/index.html">K
Murphy CS 340 (Fall 2006) U British Columbia (CA)</A>
<LI><A href="http://www.cs.utk.edu/~parker/Courses/CS594-spring06/">L E
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -