⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dataindexer.java

📁 最大熵模型源代码
💻 JAVA
字号:
///////////////////////////////////////////////////////////////////////////////// Copyright (C) 2001 Jason Baldridge and Gann Bierner//// This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.//// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU General Public License for more details.//// You should have received a copy of the GNU Lesser General Public// License along with this program; if not, write to the Free Software// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.//////////////////////////////////////////////////////////////////////////////   package opennlp.maxent;import gnu.trove.*;import java.util.*;/** * An indexer for maxent model data which handles cutoffs for uncommon * contextual predicates and provides a unique integer index for each of the * predicates.  The data structures built in the constructor of this class are * used by the GIS trainer. * * @author      Jason Baldridge * @version $Revision: 1.10 $, $Date: 2002/11/20 02:41:30 $ */public class DataIndexer {    public int[][] contexts;    public int[] outcomeList;    public int[] numTimesEventsSeen;    public String[] predLabels;    public String[] outcomeLabels;    /**     * One argument constructor for DataIndexer which calls the two argument     * constructor assuming no cutoff.     *     * @param events An Event[] which contains the a list of all the Events     *               seen in the training data.     */         public DataIndexer(EventStream eventStream) {        this(eventStream, 0);    }    /**     * Two argument constructor for DataIndexer.     *     * @param events An Event[] which contains the a list of all the Events     *               seen in the training data.     * @param cutoff The minimum number of times a predicate must have been     *               observed in order to be included in the model.     */    public DataIndexer(EventStream eventStream, int cutoff) {        TObjectIntHashMap predicateIndex;        TLinkedList events;        List eventsToCompare;        predicateIndex = new TObjectIntHashMap();        System.out.println("Indexing events using cutoff of " + cutoff + "\n");        System.out.print("\tComputing event counts...  ");        events = computeEventCounts(eventStream,predicateIndex,cutoff);        System.out.println("done. "+events.size()+" events");        System.out.print("\tIndexing...  ");        eventsToCompare = index(events,predicateIndex);        // done with event list        events = null;        // done with predicates        predicateIndex = null;        System.out.println("done.");        System.out.print("Sorting and merging events... ");        sortAndMerge(eventsToCompare);        System.out.println("Done indexing.");    }    /**     * Sorts and uniques the array of comparable events.  This method     * will alter the eventsToCompare array -- it does an in place     * sort, followed by an in place edit to remove duplicates.     *     * @param eventsToCompare a <code>ComparableEvent[]</code> value     * @since maxent 1.2.6     */    private void sortAndMerge(List eventsToCompare) {        Collections.sort(eventsToCompare);        int numEvents = eventsToCompare.size();        int numUniqueEvents = 1; // assertion: eventsToCompare.length >= 1        if (numEvents <= 1) {            return;             // nothing to do; edge case (see assertion)        }        ComparableEvent ce = (ComparableEvent)eventsToCompare.get(0);        for (int i=1; i<numEvents; i++) {            ComparableEvent ce2 = (ComparableEvent)eventsToCompare.get(i);                        if (ce.compareTo(ce2) == 0) {                ce.seen++;      // increment the seen count                eventsToCompare.set(i, null); // kill the duplicate            } else {                ce = ce2; // a new champion emerges...                numUniqueEvents++; // increment the # of unique events            }        }        System.out.println("done. Reduced " + numEvents                           + " events to " + numUniqueEvents + ".");        contexts = new int[numUniqueEvents][];        outcomeList = new int[numUniqueEvents];        numTimesEventsSeen = new int[numUniqueEvents];        for (int i = 0, j = 0; i<numEvents; i++) {            ComparableEvent evt = (ComparableEvent)eventsToCompare.get(i);            if (null == evt) {                continue;       // this was a dupe, skip over it.            }            numTimesEventsSeen[j] = evt.seen;            outcomeList[j] = evt.outcome;            contexts[j] = evt.predIndexes;            ++j;        }    }        /**     * Reads events from <tt>eventStream</tt> into a linked list.  The     * predicates associated with each event are counted and any which     * occur at least <tt>cutoff</tt> times are added to the     * <tt>predicatesInOut</tt> map along with a unique integer index.     *     * @param eventStream an <code>EventStream</code> value     * @param predicatesInOut a <code>TObjectIntHashMap</code> value     * @param cutoff an <code>int</code> value     * @return a <code>TLinkedList</code> value     */    private TLinkedList computeEventCounts(EventStream eventStream,                                           TObjectIntHashMap predicatesInOut,                                           int cutoff) {        TObjectIntHashMap counter = new TObjectIntHashMap();        TLinkedList events = new TLinkedList();        int predicateIndex = 0;        while (eventStream.hasNext()) {            Event ev = eventStream.nextEvent();            events.addLast(ev);            String[] ec = ev.getContext();            for (int j=0; j<ec.length; j++) {                if (! predicatesInOut.containsKey(ec[j])) {		    if (counter.increment(ec[j])) {		    } else {                        counter.put(ec[j], 1);                    }		    if (counter.get(ec[j]) >= cutoff) {		      predicatesInOut.put(ec[j], predicateIndex++);		      counter.remove(ec[j]);		    }                }            }        }        predicatesInOut.trimToSize();        return events;    }    private List index(TLinkedList events,                       TObjectIntHashMap predicateIndex) {        TObjectIntHashMap omap = new TObjectIntHashMap();        int numEvents = events.size();        int outcomeCount = 0;        int predCount = 0;        List eventsToCompare = new ArrayList(numEvents);        TIntArrayList indexedContext = new TIntArrayList();        for (int eventIndex=0; eventIndex<numEvents; eventIndex++) {            Event ev = (Event)events.removeFirst();            String[] econtext = ev.getContext();            ComparableEvent ce;	                int predID, ocID;            String oc = ev.getOutcome();	                if (omap.containsKey(oc)) {                ocID = omap.get(oc);            } else {                ocID = outcomeCount++;                omap.put(oc, ocID);            }            for (int i=0; i<econtext.length; i++) {                String pred = econtext[i];                if (predicateIndex.containsKey(pred)) {                    indexedContext.add(predicateIndex.get(pred));                }            }            // drop events with no active features            if (indexedContext.size() > 0) {                ce = new ComparableEvent(ocID, indexedContext.toNativeArray());                eventsToCompare.add(ce);            }	    else {	      System.err.println("Dropped event "+ev.getOutcome()+":"+Arrays.asList(ev.getContext()));	    }            // recycle the TIntArrayList            indexedContext.resetQuick();        }        outcomeLabels = toIndexedStringArray(omap);        predLabels = toIndexedStringArray(predicateIndex);        return eventsToCompare;    }    /**     * Utility method for creating a String[] array from a map whose     * keys are labels (Strings) to be stored in the array and whose     * values are the indices (Integers) at which the corresponding     * labels should be inserted.     *     * @param labelToIndexMap a <code>TObjectIntHashMap</code> value     * @return a <code>String[]</code> value     * @since maxent 1.2.6     */    static String[] toIndexedStringArray(TObjectIntHashMap labelToIndexMap) {        final String[] array = new String[labelToIndexMap.size()];        labelToIndexMap.forEachEntry(new TObjectIntProcedure() {                public boolean execute(Object str, int index) {                    array[index] = (String)str;                    return true;                }            });        return array;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -