⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cmd_nand.c

📁 F:worksip2440a board可启动u-boot-like.tar.gz F:worksip2440a board可启动u-boot-like.tar.gz
💻 C
📖 第 1 页 / 共 4 页
字号:
		return -1;	}	NAND_DISABLE_CE(nand);  /* set pin high */	*retlen = len;	return 0;}int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean){	/* This is defined as a structure so it will work on any system	 * using native endian jffs2 (the default).	 */	static struct jffs2_unknown_node clean_marker = {		JFFS2_MAGIC_BITMASK,		JFFS2_NODETYPE_CLEANMARKER,		8		/* 8 bytes in this node */	};#ifndef CONFIG_S3C2440	unsigned long nandptr = nand->IO_ADDR;#endif	struct Nand *mychip;	int ret = 0;	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {		printf ("Offset and size must be sector aligned, erasesize = %d\n",			(int) nand->erasesize);		return -1;	}	/* Select the NAND device */#ifdef CONFIG_OMAP1510	archflashwp(0,0);#endif    NAND_ENABLE_CE(nand);  /* set pin low */	/* Check the WP bit */	NanD_Command(nand, NAND_CMD_STATUS);	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {		printf ("nand_write_ecc: Device is write protected!!!\n");		ret = -1;		goto out;	}	/* Check the WP bit */	NanD_Command(nand, NAND_CMD_STATUS);	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {		printf ("%s: Device is write protected!!!\n", __FUNCTION__);		ret = -1;		goto out;	}	/* FIXME: Do nand in the background. Use timers or schedule_task() */	while(len) {		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/		mychip = &nand->chips[ofs >> nand->chipshift];		/* always check for bad block first, genuine bad blocks		 * should _never_  be erased.		 */		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {			/* Select the NAND device */			NAND_ENABLE_CE(nand);  /* set pin low */			NanD_Command(nand, NAND_CMD_ERASE1);			NanD_Address(nand, ADDR_PAGE, ofs);			NanD_Command(nand, NAND_CMD_ERASE2);			NanD_Command(nand, NAND_CMD_STATUS);#ifdef NAND_NO_RB			{ u_char ret_val;			  do{				ret_val = READ_NAND(nandptr); /* wait till ready */			  } while((ret_val & 0x40) != 0x40);			}#endif			if (READ_NAND(nandptr) & 1) {				printf ("%s: Error erasing at 0x%lx\n",					__FUNCTION__, (long)ofs);				/* There was an error */				ret = -1;				goto out;			}			if (clean) {				int n;	/* return value not used */				int p, l;				/* clean marker position and size depend				 * on the page size, since 256 byte pages				 * only have 8 bytes of oob data				 */				if (nand->page256) {					p = NAND_JFFS2_OOB8_FSDAPOS;					l = NAND_JFFS2_OOB8_FSDALEN;				}				else {					p = NAND_JFFS2_OOB16_FSDAPOS;					l = NAND_JFFS2_OOB16_FSDALEN;				}				ret = nand_write_oob(nand, ofs + p, l, &n,						     (u_char *)&clean_marker);				/* quit here if write failed */				if (ret)					goto out;			}		}		ofs += nand->erasesize;		len -= nand->erasesize;	}out:	/* De-select the NAND device */	NAND_DISABLE_CE(nand);  /* set pin high */#ifdef CONFIG_OMAP1510    	archflashwp(0,1);#endif	return ret;}static inline int nandcheck(unsigned long potential, unsigned long physadr){	return 0;}unsigned long nand_probe(unsigned long physadr){	struct nand_chip *nand = NULL;	int i = 0, ChipID = 1;#ifdef CONFIG_MTD_NAND_ECC_JFFS2	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;	oob_config.eccvalid_pos = 4;#else	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;#endif	oob_config.badblock_pos = 5;	for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {			nand = &nand_dev_desc[i];			break;		}	}	if (!nand)		return (0);	memset((char *)nand, 0, sizeof(struct nand_chip));	nand->IO_ADDR = physadr;	nand->cache_page = -1;  /* init the cache page */	NanD_ScanChips(nand);	if (nand->totlen == 0) {		/* no chips found, clean up and quit */		memset((char *)nand, 0, sizeof(struct nand_chip));		nand->ChipID = NAND_ChipID_UNKNOWN;		return (0);	}	nand->ChipID = ChipID;	if (curr_device == -1)		curr_device = i;	nand->data_buf = malloc (nand->oobblock + nand->oobsize);	if (!nand->data_buf) {		puts ("Cannot allocate memory for data structures.\n");		return (0);	}	return (nand->totlen);}#ifdef CONFIG_MTD_NAND_ECC/* * Pre-calculated 256-way 1 byte column parity */static const u_char nand_ecc_precalc_table[] = {	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00};/* * Creates non-inverted ECC code from line parity */static void nand_trans_result(u_char reg2, u_char reg3,	u_char *ecc_code){	u_char a, b, i, tmp1, tmp2;	/* Initialize variables */	a = b = 0x80;	tmp1 = tmp2 = 0;	/* Calculate first ECC byte */	for (i = 0; i < 4; i++) {		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */			tmp1 |= b;		b >>= 1;		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */			tmp1 |= b;		b >>= 1;		a >>= 1;	}	/* Calculate second ECC byte */	b = 0x80;	for (i = 0; i < 4; i++) {		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */			tmp2 |= b;		b >>= 1;		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */			tmp2 |= b;		b >>= 1;		a >>= 1;	}	/* Store two of the ECC bytes */	ecc_code[0] = tmp1;	ecc_code[1] = tmp2;}/* * Calculate 3 byte ECC code for 256 byte block */static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code){	u_char idx, reg1, reg3;	int j;	/* Initialize variables */	reg1 = reg3 = 0;	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;	/* Build up column parity */	for(j = 0; j < 256; j++) {		/* Get CP0 - CP5 from table */		idx = nand_ecc_precalc_table[dat[j]];		reg1 ^= idx;		/* All bit XOR = 1 ? */		if (idx & 0x40) {			reg3 ^= (u_char) j;		}	}	/* Create non-inverted ECC code from line parity */	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);	/* Calculate final ECC code */	ecc_code[0] = ~ecc_code[0];	ecc_code[1] = ~ecc_code[1];	ecc_code[2] = ((~reg1) << 2) | 0x03;}/* * Detect and correct a 1 bit error for 256 byte block */static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc){	u_char a, b, c, d1, d2, d3, add, bit, i;	/* Do error detection */	d1 = calc_ecc[0] ^ read_ecc[0];	d2 = calc_ecc[1] ^ read_ecc[1];	d3 = calc_ecc[2] ^ read_ecc[2];	if ((d1 | d2 | d3) == 0) {		/* No errors */		return 0;	}	else {		a = (d1 ^ (d1 >> 1)) & 0x55;		b = (d2 ^ (d2 >> 1)) & 0x55;		c = (d3 ^ (d3 >> 1)) & 0x54;		/* Found and will correct single bit error in the data */		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {			c = 0x80;			add = 0;			a = 0x80;			for (i=0; i<4; i++) {				if (d1 & c)					add |= a;				c >>= 2;				a >>= 1;			}			c = 0x80;			for (i=0; i<4; i++) {				if (d2 & c)					add |= a;				c >>= 2;				a >>= 1;			}			bit = 0;			b = 0x04;			c = 0x80;			for (i=0; i<3; i++) {				if (d3 & c)					bit |= b;				c >>= 2;				b >>= 1;			}			b = 0x01;			a = dat[add];			a ^= (b << bit);			dat[add] = a;			return 1;		}		else {			i = 0;			while (d1) {				if (d1 & 0x01)					++i;				d1 >>= 1;			}			while (d2) {				if (d2 & 0x01)					++i;				d2 >>= 1;			}			while (d3) {				if (d3 & 0x01)					++i;				d3 >>= 1;			}			if (i == 1) {				/* ECC Code Error Correction */				read_ecc[0] = calc_ecc[0];				read_ecc[1] = calc_ecc[1];				read_ecc[2] = calc_ecc[2];				return 2;			}			else {				/* Uncorrectable Error */				return -1;			}		}	}	/* Should never happen */	return -1;}#endif#ifdef CONFIG_JFFS2_NANDint read_jffs2_nand(size_t start, size_t len,		    size_t * retlen, u_char * buf, int nanddev){	return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,		       start, len, retlen, buf);}#endif /* CONFIG_JFFS2_NAND */#ifdef CONFIG_AESOP_YAFFS/* * NAND Flash Page write function for YAFFS image write */int nand_write_page_yaffs (int, u_char *);int nand_write_page_yaffs (int page, u_char *buff){	int i;	struct nand_chip *nand = &nand_dev_desc[curr_device];    	NAND_ENABLE_CE(nand);  /* set pin low */	/* Send command to begin auto page programming */	NanD_Command(nand, NAND_CMD_READ0);	NanD_Command(nand, NAND_CMD_SEQIN);	NanD_Address(nand, ADDR_COLUMN_PAGE, page << nand->page_shift);	/* Write out complete page of data with OOB */	for (i = 0; i < (nand->oobblock + nand->oobsize); i++)		WRITE_NAND(buff[i], nand->IO_ADDR);	/* Send command to actually program the data */	NanD_Command(nand, NAND_CMD_PAGEPROG);	NanD_Command(nand, NAND_CMD_STATUS);	/* See if device thinks it succeeded */	if (READ_NAND(nand->IO_ADDR) & 0x01) {		NAND_DISABLE_CE(nand);  /* set pin high */		printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__, page);		return -1;	}	/*	 * The NAND device assumes that it is always writing to	 * a cleanly erased page. Hence, it performs its internal	 * write verification only on bits that transitioned from	 * 1 to 0. The device does NOT verify the whole page on a	 * byte by byte basis. It is possible that the page was	 * not completely erased or the page is becoming unusable	 * due to wear. The read with ECC would catch the error	 * later when the ECC page check fails, but we would rather	 * catch it early in the page write stage. Better to write	 * no data than invalid data.	 */	/* Send command to read back the page */	NanD_Command(nand, NAND_CMD_READ0);	NanD_Address(nand, ADDR_COLUMN_PAGE, page << nand->page_shift);	/* Loop through and verify the data */	for (i = 0; i < (nand->oobblock + nand->oobsize); i++) {		if (buff[i] != READ_NAND(nand->IO_ADDR)) {			NAND_DISABLE_CE(nand);  /* set pin high */			printf ("%s: Failed write verify, page 0x%08x ", __FUNCTION__, page);			return -1;		}	}	NAND_DISABLE_CE(nand);  /* set pin high */	return 0;}#endif /* CONFIG_AESOP_YAFFS */#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -