📄 cmd_mem.c
字号:
if (size == 4) { longp = (uint *)addr; for (;;) *longp = data; } if (size == 2) { shortp = (ushort *)addr; for (;;) *shortp = data; } cp = (u_char *)addr; for (;;) *cp = data; } if (size == 4) { for (;;) { longp = (uint *)addr; i = length; while (i-- > 0) *longp++ = data; } } if (size == 2) { for (;;) { shortp = (ushort *)addr; i = length; while (i-- > 0) *shortp++ = data; } } for (;;) { cp = (u_char *)addr; i = length; while (i-- > 0) *cp++ = data; }}#endif /* CONFIG_LOOPW *//* * Perform a memory test. A more complete alternative test can be * configured using CFG_ALT_MEMTEST. The complete test loops until * interrupted by ctrl-c or by a failure of one of the sub-tests. */int do_mem_mtest (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]){ vu_long *addr, *start, *end; ulong val; ulong readback;#if defined(CFG_ALT_MEMTEST) vu_long addr_mask; vu_long offset; vu_long test_offset; vu_long pattern; vu_long temp; vu_long anti_pattern; vu_long num_words;#if defined(CFG_MEMTEST_SCRATCH) vu_long *dummy = (vu_long*)CFG_MEMTEST_SCRATCH;#else vu_long *dummy = NULL;#endif int j; int iterations = 1; static const ulong bitpattern[] = { 0x00000001, /* single bit */ 0x00000003, /* two adjacent bits */ 0x00000007, /* three adjacent bits */ 0x0000000F, /* four adjacent bits */ 0x00000005, /* two non-adjacent bits */ 0x00000015, /* three non-adjacent bits */ 0x00000055, /* four non-adjacent bits */ 0xaaaaaaaa, /* alternating 1/0 */ };#else ulong incr; ulong pattern; int rcode = 0;#endif if (argc > 1) { start = (ulong *)simple_strtoul(argv[1], NULL, 16); } else { start = (ulong *)CFG_MEMTEST_START; } if (argc > 2) { end = (ulong *)simple_strtoul(argv[2], NULL, 16); } else { end = (ulong *)(CFG_MEMTEST_END); } if (argc > 3) { pattern = (ulong)simple_strtoul(argv[3], NULL, 16); } else { pattern = 0; }#if defined(CFG_ALT_MEMTEST) printf ("Testing %08x ... %08x:\n", (uint)start, (uint)end); PRINTF("%s:%d: start 0x%p end 0x%p\n", __FUNCTION__, __LINE__, start, end); for (;;) { if (ctrlc()) { putc ('\n'); return 1; } printf("Iteration: %6d\r", iterations); PRINTF("Iteration: %6d\n", iterations); iterations++; /* * Data line test: write a pattern to the first * location, write the 1's complement to a 'parking' * address (changes the state of the data bus so a * floating bus doen't give a false OK), and then * read the value back. Note that we read it back * into a variable because the next time we read it, * it might be right (been there, tough to explain to * the quality guys why it prints a failure when the * "is" and "should be" are obviously the same in the * error message). * * Rather than exhaustively testing, we test some * patterns by shifting '1' bits through a field of * '0's and '0' bits through a field of '1's (i.e. * pattern and ~pattern). */ addr = start; for (j = 0; j < sizeof(bitpattern)/sizeof(bitpattern[0]); j++) { val = bitpattern[j]; for(; val != 0; val <<= 1) { *addr = val; *dummy = ~val; /* clear the test data off of the bus */ readback = *addr; if(readback != val) { printf ("FAILURE (data line): " "expected %08lx, actual %08lx\n", val, readback); } *addr = ~val; *dummy = val; readback = *addr; if(readback != ~val) { printf ("FAILURE (data line): " "Is %08lx, should be %08lx\n", readback, ~val); } } } /* * Based on code whose Original Author and Copyright * information follows: Copyright (c) 1998 by Michael * Barr. This software is placed into the public * domain and may be used for any purpose. However, * this notice must not be changed or removed and no * warranty is either expressed or implied by its * publication or distribution. */ /* * Address line test * * Description: Test the address bus wiring in a * memory region by performing a walking * 1's test on the relevant bits of the * address and checking for aliasing. * This test will find single-bit * address failures such as stuck -high, * stuck-low, and shorted pins. The base * address and size of the region are * selected by the caller. * * Notes: For best results, the selected base * address should have enough LSB 0's to * guarantee single address bit changes. * For example, to test a 64-Kbyte * region, select a base address on a * 64-Kbyte boundary. Also, select the * region size as a power-of-two if at * all possible. * * Returns: 0 if the test succeeds, 1 if the test fails. * * ## NOTE ## Be sure to specify start and end * addresses such that addr_mask has * lots of bits set. For example an * address range of 01000000 02000000 is * bad while a range of 01000000 * 01ffffff is perfect. */ addr_mask = ((ulong)end - (ulong)start)/sizeof(vu_long); pattern = (vu_long) 0xaaaaaaaa; anti_pattern = (vu_long) 0x55555555; PRINTF("%s:%d: addr mask = 0x%.8lx\n", __FUNCTION__, __LINE__, addr_mask); /* * Write the default pattern at each of the * power-of-two offsets. */ for (offset = 1; (offset & addr_mask) != 0; offset <<= 1) { start[offset] = pattern; } /* * Check for address bits stuck high. */ test_offset = 0; start[test_offset] = anti_pattern; for (offset = 1; (offset & addr_mask) != 0; offset <<= 1) { temp = start[offset]; if (temp != pattern) { printf ("\nFAILURE: Address bit stuck high @ 0x%.8lx:" " expected 0x%.8lx, actual 0x%.8lx\n", (ulong)&start[offset], pattern, temp); return 1; } } start[test_offset] = pattern; /* * Check for addr bits stuck low or shorted. */ for (test_offset = 1; (test_offset & addr_mask) != 0; test_offset <<= 1) { start[test_offset] = anti_pattern; for (offset = 1; (offset & addr_mask) != 0; offset <<= 1) { temp = start[offset]; if ((temp != pattern) && (offset != test_offset)) { printf ("\nFAILURE: Address bit stuck low or shorted @" " 0x%.8lx: expected 0x%.8lx, actual 0x%.8lx\n", (ulong)&start[offset], pattern, temp); return 1; } } start[test_offset] = pattern; } /* * Description: Test the integrity of a physical * memory device by performing an * increment/decrement test over the * entire region. In the process every * storage bit in the device is tested * as a zero and a one. The base address * and the size of the region are * selected by the caller. * * Returns: 0 if the test succeeds, 1 if the test fails. */ num_words = ((ulong)end - (ulong)start)/sizeof(vu_long) + 1; /* * Fill memory with a known pattern. */ for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) { start[offset] = pattern; } /* * Check each location and invert it for the second pass. */ for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) { temp = start[offset]; if (temp != pattern) { printf ("\nFAILURE (read/write) @ 0x%.8lx:" " expected 0x%.8lx, actual 0x%.8lx)\n", (ulong)&start[offset], pattern, temp); return 1; } anti_pattern = ~pattern; start[offset] = anti_pattern; } /* * Check each location for the inverted pattern and zero it. */ for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) { anti_pattern = ~pattern; temp = start[offset]; if (temp != anti_pattern) { printf ("\nFAILURE (read/write): @ 0x%.8lx:" " expected 0x%.8lx, actual 0x%.8lx)\n", (ulong)&start[offset], anti_pattern, temp); return 1; } start[offset] = 0; } }#else /* The original, quickie test */ incr = 1; for (;;) { if (ctrlc()) { putc ('\n'); return 1; } printf ("\rPattern %08lX Writing..." "%12s" "\b\b\b\b\b\b\b\b\b\b", pattern, ""); for (addr=start,val=pattern; addr<end; addr++) { *addr = val; val += incr; } puts ("Reading..."); for (addr=start,val=pattern; addr<end; addr++) { readback = *addr; if (readback != val) { printf ("\nMem error @ 0x%08X: " "found %08lX, expected %08lX\n", (uint)addr, readback, val); rcode = 1; } val += incr; } /* * Flip the pattern each time to make lots of zeros and * then, the next time, lots of ones. We decrement * the "negative" patterns and increment the "positive" * patterns to preserve this feature. */ if(pattern & 0x80000000) { pattern = -pattern; /* complement & increment */ } else { pattern = ~pattern; } incr = -incr; } return rcode;#endif}/* Modify memory. * * Syntax: * mm{.b, .w, .l} {addr} * nm{.b, .w, .l} {addr} */static intmod_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]){ ulong addr, i; int nbytes, size; extern char console_buffer[]; if (argc != 2) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; }#ifdef CONFIG_BOOT_RETRY_TIME reset_cmd_timeout(); /* got a good command to get here */#endif /* We use the last specified parameters, unless new ones are * entered. */ addr = mm_last_addr; size = mm_last_size; if ((flag & CMD_FLAG_REPEAT) == 0) { /* New command specified. Check for a size specification. * Defaults to long if no or incorrect specification. */ if ((size = cmd_get_data_size(argv[0], 1)) < 0) return 1; /* Address is specified since argc > 1 */ addr = simple_strtoul(argv[1], NULL, 16); addr += base_address; }#ifdef CONFIG_HAS_DATAFLASH if (addr_dataflash(addr)){ puts ("Can't modify DataFlash in place. Use cp instead.\n\r"); return 0; }#endif /* Print the address, followed by value. Then accept input for * the next value. A non-converted value exits. */ do { printf("%08lx:", addr); if (size == 4) printf(" %08x", *((uint *)addr)); else if (size == 2) printf(" %04x", *((ushort *)addr)); else printf(" %02x", *((u_char *)addr)); nbytes = readline (" ? "); if (nbytes == 0 || (nbytes == 1 && console_buffer[0] == '-')) { /* <CR> pressed as only input, don't modify current * location and move to next. "-" pressed will go back. */ if (incrflag) addr += nbytes ? -size : size; nbytes = 1;#ifdef CONFIG_BOOT_RETRY_TIME reset_cmd_timeout(); /* good enough to not time out */#endif }#ifdef CONFIG_BOOT_RETRY_TIME else if (nbytes == -2) { break; /* timed out, exit the command */ }#endif else { char *endp; i = simple_strtoul(console_buffer, &endp, 16); nbytes = endp - console_buffer; if (nbytes) {#ifdef CONFIG_BOOT_RETRY_TIME /* good enough to not time out */ reset_cmd_timeout();#endif if (size == 4) *((uint *)addr) = i; else if (size == 2) *((ushort *)addr) = i; else *((u_char *)addr) = i; if (incrflag) addr += size; } } } while (nbytes); mm_last_addr = addr; mm_last_size = size; return 0;}#ifndef CONFIG_CRC32_VERIFYint do_mem_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]){ ulong addr, length; ulong crc; ulong *ptr; if (argc < 3) { printf ("Usage:\n%s\n", cmdtp->usage); return 1; } addr = simple_strtoul (argv[1], NULL, 16); addr += base_address; length = simple_strtoul (argv[2], NULL, 16); crc = crc32 (0, (const uchar *) addr, length); printf ("CRC32 for %08lx ... %08lx ==> %08lx\n", addr, addr + length - 1, crc); if (argc > 3) { ptr = (ulong *) simple_strtoul (argv[3], NULL, 16); *ptr = crc; } return 0;}#else /* CONFIG_CRC32_VERIFY */int do_mem_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]){ ulong addr, length; ulong crc; ulong *ptr; ulong vcrc; int verify; int ac; char **av; if (argc < 3) { usage: printf ("Usage:\n%s\n", cmdtp->usage); return 1; } av = argv + 1; ac = argc - 1; if (strcmp(*av, "-v") == 0) { verify = 1; av++; ac--; if (ac < 3) goto usage; } else verify = 0; addr = simple_strtoul(*av++, NULL, 16); addr += base_address; length = simple_strtoul(*av++, NULL, 16); crc = crc32(0, (const uchar *) addr, length); if (!verify) { printf ("CRC32 for %08lx ... %08lx ==> %08lx\n", addr, addr + length - 1, crc); if (ac > 2) { ptr = (ulong *) simple_strtoul (*av++, NULL, 16); *ptr = crc; } } else { vcrc = simple_strtoul(*av++, NULL, 16); if (vcrc != crc) { printf ("CRC32 for %08lx ... %08lx ==> %08lx != %08lx ** ERROR **\n", addr, addr + length - 1, crc, vcrc); return 1; } } return 0;}#endif /* CONFIG_CRC32_VERIFY *//**************************************************/#if (CONFIG_COMMANDS & CFG_CMD_MEMORY)U_BOOT_CMD( md, 3, 1, do_mem_md, "md - memory display\n", "[.b, .w, .l] address [# of objects]\n - memory display\n");U_BOOT_CMD( mm, 2, 1, do_mem_mm, "mm - memory modify (auto-incrementing)\n", "[.b, .w, .l] address\n" " - memory modify, auto increment address\n");U_BOOT_CMD( nm, 2, 1, do_mem_nm, "nm - memory modify (constant address)\n", "[.b, .w, .l] address\n - memory modify, read and keep address\n");U_BOOT_CMD( mw, 4, 1, do_mem_mw, "mw - memory write (fill)\n", "[.b, .w, .l] address value [count]\n - write memory\n");U_BOOT_CMD( cp, 4, 1, do_mem_cp, "cp - memory copy\n", "[.b, .w, .l] source target count\n - copy memory\n");U_BOOT_CMD( cmp, 4, 1, do_mem_cmp, "cmp - memory compare\n", "[.b, .w, .l] addr1 addr2 count\n - compare memory\n");#ifndef CONFIG_CRC32_VERIFYU_BOOT_CMD( crc32, 4, 1, do_mem_crc, "crc32 - checksum calculation\n", "address count [addr]\n - compute CRC32 checksum [save at addr]\n");#else /* CONFIG_CRC32_VERIFY */U_BOOT_CMD( crc32, 5, 1, do_mem_crc, "crc32 - checksum calculation\n", "address count [addr]\n - compute CRC32 checksum [save at addr]\n" "-v address count crc\n - verify crc of memory area\n");#endif /* CONFIG_CRC32_VERIFY */U_BOOT_CMD( base, 2, 1, do_mem_base, "base - print or set address offset\n", "\n - print address offset for memory commands\n" "base off\n - set address offset for memory commands to 'off'\n");U_BOOT_CMD( loop, 3, 1, do_mem_loop, "loop - infinite loop on address range\n", "[.b, .w, .l] address number_of_objects\n" " - loop on a set of addresses\n");#ifdef CONFIG_LOOPWU_BOOT_CMD( loopw, 4, 1, do_mem_loopw, "loopw - infinite write loop on address range\n", "[.b, .w, .l] address number_of_objects data_to_write\n" " - loop on a set of addresses\n");#endif /* CONFIG_LOOPW */U_BOOT_CMD( mtest, 4, 1, do_mem_mtest, "mtest - simple RAM test\n", "[start [end [pattern]]]\n" " - simple RAM read/write test\n");#ifdef CONFIG_MX_CYCLICU_BOOT_CMD( mdc, 4, 1, do_mem_mdc, "mdc - memory display cyclic\n", "[.b, .w, .l] address count delay(ms)\n - memory display cyclic\n");U_BOOT_CMD( mwc, 4, 1, do_mem_mwc, "mwc - memory write cyclic\n", "[.b, .w, .l] address value delay(ms)\n - memory write cyclic\n");#endif /* CONFIG_MX_CYCLIC */#endif#endif /* CFG_CMD_MEMORY */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -