⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 docecc.c

📁 F:worksip2440a board可启动u-boot-like.tar.gz F:worksip2440a board可启动u-boot-like.tar.gz
💻 C
字号:
/* * ECC algorithm for M-systems disk on chip. We use the excellent Reed * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the * GNU GPL License. The rest is simply to convert the disk on chip * syndrom into a standard syndom. * * Author: Fabrice Bellard (fabrice.bellard@netgem.com) * Copyright (C) 2000 Netgem S.A. * * $Id: docecc.c,v 1.1.1.1 2005/06/27 17:05:33 linuxpark Exp $ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */#include <config.h>#include <common.h>#include <malloc.h>#undef ECC_DEBUG#undef PSYCHO_DEBUG#if (CONFIG_COMMANDS & CFG_CMD_DOC)#include <linux/mtd/doc2000.h>/* need to undef it (from asm/termbits.h) */#undef B0#define MM 10 /* Symbol size in bits */#define KK (1023-4) /* Number of data symbols per block */#define B0 510 /* First root of generator polynomial, alpha form */#define PRIM 1 /* power of alpha used to generate roots of generator poly */#define	NN ((1 << MM) - 1)typedef unsigned short dtype;/* 1+x^3+x^10 */static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };/* This defines the type used to store an element of the Galois Field * used by the code. Make sure this is something larger than a char if * if anything larger than GF(256) is used. * * Note: unsigned char will work up to GF(256) but int seems to run * faster on the Pentium. */typedef int gf;/* No legal value in index form represents zero, so * we need a special value for this purpose */#define A0	(NN)/* Compute x % NN, where NN is 2**MM - 1, * without a slow divide */static inline gfmodnn(int x){  while (x >= NN) {    x -= NN;    x = (x >> MM) + (x & NN);  }  return x;}#define	CLEAR(a,n) {\int ci;\for(ci=(n)-1;ci >=0;ci--)\(a)[ci] = 0;\}#define	COPY(a,b,n) {\int ci;\for(ci=(n)-1;ci >=0;ci--)\(a)[ci] = (b)[ci];\}#define	COPYDOWN(a,b,n) {\int ci;\for(ci=(n)-1;ci >=0;ci--)\(a)[ci] = (b)[ci];\}#define Ldec 1/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;		   polynomial form -> index form  index_of[j=alpha**i] = i   alpha=2 is the primitive element of GF(2**m)   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:	Let @ represent the primitive element commonly called "alpha" that   is the root of the primitive polynomial p(x). Then in GF(2^m), for any   0 <= i <= 2^m-2,	@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for   example the polynomial representation of @^5 would be given by the binary   representation of the integer "alpha_to[5]".		   Similarily, index_of[] can be used as follows:	As above, let @ represent the primitive element of GF(2^m) that is   the root of the primitive polynomial p(x). In order to find the power   of @ (alpha) that has the polynomial representation	a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)   we consider the integer "i" whose binary representation with a(0) being LSB   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry   "index_of[i]". Now, @^index_of[i] is that element whose polynomial    representation is (a(0),a(1),a(2),...,a(m-1)).   NOTE:	The element alpha_to[2^m-1] = 0 always signifying that the   representation of "@^infinity" = 0 is (0,0,0,...,0).	Similarily, the element index_of[0] = A0 always signifying   that the power of alpha which has the polynomial representation   (0,0,...,0) is "infinity".*/static voidgenerate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]){  register int i, mask;  mask = 1;  Alpha_to[MM] = 0;  for (i = 0; i < MM; i++) {    Alpha_to[i] = mask;    Index_of[Alpha_to[i]] = i;    /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */    if (Pp[i] != 0)      Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */    mask <<= 1;	/* single left-shift */  }  Index_of[Alpha_to[MM]] = MM;  /*   * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by   * poly-repr of @^i shifted left one-bit and accounting for any @^MM   * term that may occur when poly-repr of @^i is shifted.   */  mask >>= 1;  for (i = MM + 1; i < NN; i++) {    if (Alpha_to[i - 1] >= mask)      Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);    else      Alpha_to[i] = Alpha_to[i - 1] << 1;    Index_of[Alpha_to[i]] = i;  }  Index_of[0] = A0;  Alpha_to[NN] = 0;}/* * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content * of the feedback shift register after having processed the data and * the ECC. * * Return number of symbols corrected, or -1 if codeword is illegal * or uncorrectable. If eras_pos is non-null, the detected error locations * are written back. NOTE! This array must be at least NN-KK elements long. * The corrected data are written in eras_val[]. They must be xor with the data * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . * * First "no_eras" erasures are declared by the calling program. Then, the * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). * If the number of channel errors is not greater than "t_after_eras" the * transmitted codeword will be recovered. Details of algorithm can be found * in R. Blahut's "Theory ... of Error-Correcting Codes". * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure * will result. The decoder *could* check for this condition, but it would involve * extra time on every decoding operation. * */static interas_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],	    gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],	    int no_eras){  int deg_lambda, el, deg_omega;  int i, j, r,k;  gf u,q,tmp,num1,num2,den,discr_r;  gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly					 * and syndrome poly */  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];  int syn_error, count;  syn_error = 0;  for(i=0;i<NN-KK;i++)      syn_error |= bb[i];  if (!syn_error) {    /* if remainder is zero, data[] is a codeword and there are no     * errors to correct. So return data[] unmodified     */    count = 0;    goto finish;  }  for(i=1;i<=NN-KK;i++){    s[i] = bb[0];  }  for(j=1;j<NN-KK;j++){    if(bb[j] == 0)      continue;    tmp = Index_of[bb[j]];    for(i=1;i<=NN-KK;i++)      s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];  }  /* undo the feedback register implicit multiplication and convert     syndromes to index form */  for(i=1;i<=NN-KK;i++) {      tmp = Index_of[s[i]];      if (tmp != A0)	  tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);      s[i] = tmp;  }  CLEAR(&lambda[1],NN-KK);  lambda[0] = 1;  if (no_eras > 0) {    /* Init lambda to be the erasure locator polynomial */    lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];    for (i = 1; i < no_eras; i++) {      u = modnn(PRIM*eras_pos[i]);      for (j = i+1; j > 0; j--) {	tmp = Index_of[lambda[j - 1]];	if(tmp != A0)	  lambda[j] ^= Alpha_to[modnn(u + tmp)];      }    }#ifdef ECC_DEBUG    /* Test code that verifies the erasure locator polynomial just constructed       Needed only for decoder debugging. */    /* find roots of the erasure location polynomial */    for(i=1;i<=no_eras;i++)      reg[i] = Index_of[lambda[i]];    count = 0;    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {      q = 1;      for (j = 1; j <= no_eras; j++)	if (reg[j] != A0) {	  reg[j] = modnn(reg[j] + j);	  q ^= Alpha_to[reg[j]];	}      if (q != 0)	continue;      /* store root and error location number indices */      root[count] = i;      loc[count] = k;      count++;    }    if (count != no_eras) {      printf("\n lambda(x) is WRONG\n");      count = -1;      goto finish;    }#ifdef PSYCHO_DEBUG    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");    for (i = 0; i < count; i++)      printf("%d ", loc[i]);    printf("\n");#endif#endif  }  for(i=0;i<NN-KK+1;i++)    b[i] = Index_of[lambda[i]];  /*   * Begin Berlekamp-Massey algorithm to determine error+erasure   * locator polynomial   */  r = no_eras;  el = no_eras;  while (++r <= NN-KK) {	/* r is the step number */    /* Compute discrepancy at the r-th step in poly-form */    discr_r = 0;    for (i = 0; i < r; i++){      if ((lambda[i] != 0) && (s[r - i] != A0)) {	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];      }    }    discr_r = Index_of[discr_r];	/* Index form */    if (discr_r == A0) {      /* 2 lines below: B(x) <-- x*B(x) */      COPYDOWN(&b[1],b,NN-KK);      b[0] = A0;    } else {      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */      t[0] = lambda[0];      for (i = 0 ; i < NN-KK; i++) {	if(b[i] != A0)	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];	else	  t[i+1] = lambda[i+1];      }      if (2 * el <= r + no_eras - 1) {	el = r + no_eras - el;	/*	 * 2 lines below: B(x) <-- inv(discr_r) *	 * lambda(x)	 */	for (i = 0; i <= NN-KK; i++)	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);      } else {	/* 2 lines below: B(x) <-- x*B(x) */	COPYDOWN(&b[1],b,NN-KK);	b[0] = A0;      }      COPY(lambda,t,NN-KK+1);    }  }  /* Convert lambda to index form and compute deg(lambda(x)) */  deg_lambda = 0;  for(i=0;i<NN-KK+1;i++){    lambda[i] = Index_of[lambda[i]];    if(lambda[i] != A0)      deg_lambda = i;  }  /*   * Find roots of the error+erasure locator polynomial by Chien   * Search   */  COPY(&reg[1],&lambda[1],NN-KK);  count = 0;		/* Number of roots of lambda(x) */  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {    q = 1;    for (j = deg_lambda; j > 0; j--){      if (reg[j] != A0) {	reg[j] = modnn(reg[j] + j);	q ^= Alpha_to[reg[j]];      }    }    if (q != 0)      continue;    /* store root (index-form) and error location number */    root[count] = i;    loc[count] = k;    /* If we've already found max possible roots,     * abort the search to save time     */    if(++count == deg_lambda)      break;  }  if (deg_lambda != count) {    /*     * deg(lambda) unequal to number of roots => uncorrectable     * error detected     */    count = -1;    goto finish;  }  /*   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo   * x**(NN-KK)). in index form. Also find deg(omega).   */  deg_omega = 0;  for (i = 0; i < NN-KK;i++){    tmp = 0;    j = (deg_lambda < i) ? deg_lambda : i;    for(;j >= 0; j--){      if ((s[i + 1 - j] != A0) && (lambda[j] != A0))	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];    }    if(tmp != 0)      deg_omega = i;    omega[i] = Index_of[tmp];  }  omega[NN-KK] = A0;  /*   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form   */  for (j = count-1; j >=0; j--) {    num1 = 0;    for (i = deg_omega; i >= 0; i--) {      if (omega[i] != A0)	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];    }    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];    den = 0;    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */    for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {      if(lambda[i+1] != A0)	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];    }    if (den == 0) {#ifdef ECC_DEBUG      printf("\n ERROR: denominator = 0\n");#endif      /* Convert to dual- basis */      count = -1;      goto finish;    }    /* Apply error to data */    if (num1 != 0) {	eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];    } else {	eras_val[j] = 0;    }  } finish:  for(i=0;i<count;i++)      eras_pos[i] = loc[i];  return count;}/***************************************************************************//* The DOC specific code begins here */#define SECTOR_SIZE 512/* The sector bytes are packed into NB_DATA MM bits words */#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)/* * Correct the errors in 'sector[]' by using 'ecc1[]' which is the * content of the feedback shift register applyied to the sector and * the ECC. Return the number of errors corrected (and correct them in * sector), or -1 if error */int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]){    int parity, i, nb_errors;    gf bb[NN - KK + 1];    gf error_val[NN-KK];    int error_pos[NN-KK], pos, bitpos, index, val;    dtype *Alpha_to, *Index_of;    /* init log and exp tables here to save memory. However, it is slower */    Alpha_to = malloc((NN + 1) * sizeof(dtype));    if (!Alpha_to)	return -1;    Index_of = malloc((NN + 1) * sizeof(dtype));    if (!Index_of) {	free(Alpha_to);	return -1;    }    generate_gf(Alpha_to, Index_of);    parity = ecc1[1];    bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);    bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);    bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);    bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);    nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,			    error_val, error_pos, 0);    if (nb_errors <= 0)	goto the_end;    /* correct the errors */    for(i=0;i<nb_errors;i++) {	pos = error_pos[i];	if (pos >= NB_DATA && pos < KK) {	    nb_errors = -1;	    goto the_end;	}	if (pos < NB_DATA) {	    /* extract bit position (MSB first) */	    pos = 10 * (NB_DATA - 1 - pos) - 6;	    /* now correct the following 10 bits. At most two bytes	       can be modified since pos is even */	    index = (pos >> 3) ^ 1;	    bitpos = pos & 7;	    if ((index >= 0 && index < SECTOR_SIZE) ||		index == (SECTOR_SIZE + 1)) {		val = error_val[i] >> (2 + bitpos);		parity ^= val;		if (index < SECTOR_SIZE)		    sector[index] ^= val;	    }	    index = ((pos >> 3) + 1) ^ 1;	    bitpos = (bitpos + 10) & 7;	    if (bitpos == 0)		bitpos = 8;	    if ((index >= 0 && index < SECTOR_SIZE) ||		index == (SECTOR_SIZE + 1)) {		val = error_val[i] << (8 - bitpos);		parity ^= val;		if (index < SECTOR_SIZE)		    sector[index] ^= val;	    }	}    }    /* use parity to test extra errors */    if ((parity & 0xff) != 0)	nb_errors = -1; the_end:    free(Alpha_to);    free(Index_of);    return nb_errors;}#endif /* (CONFIG_COMMANDS & CFG_CMD_DOC) */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -