📄 readme
字号:
- IP address: CONFIG_IPADDR Define a default value for the IP address to use for the default ethernet interface, in case this is not determined through e.g. bootp.- Server IP address: CONFIG_SERVERIP Defines a default value for theIP address of a TFTP server to contact when using the "tftboot" command.- BOOTP Recovery Mode: CONFIG_BOOTP_RANDOM_DELAY If you have many targets in a network that try to boot using BOOTP, you may want to avoid that all systems send out BOOTP requests at precisely the same moment (which would happen for instance at recovery from a power failure, when all systems will try to boot, thus flooding the BOOTP server. Defining CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be inserted before sending out BOOTP requests. The following delays are insterted then: 1st BOOTP request: delay 0 ... 1 sec 2nd BOOTP request: delay 0 ... 2 sec 3rd BOOTP request: delay 0 ... 4 sec 4th and following BOOTP requests: delay 0 ... 8 sec- DHCP Advanced Options: CONFIG_BOOTP_MASK You can fine tune the DHCP functionality by adding these flags to the CONFIG_BOOTP_MASK define: CONFIG_BOOTP_DNS2 - If a DHCP client requests the DNS serverip from a DHCP server, it is possible that more than one DNS serverip is offered to the client. If CONFIG_BOOTP_DNS2 is enabled, the secondary DNS serverip will be stored in the additional environment variable "dnsip2". The first DNS serverip is always stored in the variable "dnsip", when CONFIG_BOOTP_DNS is added to the CONFIG_BOOTP_MASK. CONFIG_BOOTP_SEND_HOSTNAME - Some DHCP servers are capable to do a dynamic update of a DNS server. To do this, they need the hostname of the DHCP requester. If CONFIG_BOOP_SEND_HOSTNAME is added to the CONFIG_BOOTP_MASK, the content of the "hostname" environment variable is passed as option 12 to the DHCP server. - CDP Options: CONFIG_CDP_DEVICE_ID The device id used in CDP trigger frames. CONFIG_CDP_DEVICE_ID_PREFIX A two character string which is prefixed to the MAC address of the device. CONFIG_CDP_PORT_ID A printf format string which contains the ascii name of the port. Normally is set to "eth%d" which sets eth0 for the first ethernet, eth1 for the second etc. CONFIG_CDP_CAPABILITIES A 32bit integer which indicates the device capabilities; 0x00000010 for a normal host which does not forwards. CONFIG_CDP_VERSION An ascii string containing the version of the software. CONFIG_CDP_PLATFORM An ascii string containing the name of the platform. CONFIG_CDP_TRIGGER A 32bit integer sent on the trigger. CONFIG_CDP_POWER_CONSUMPTION A 16bit integer containing the power consumption of the device in .1 of milliwatts. CONFIG_CDP_APPLIANCE_VLAN_TYPE A byte containing the id of the VLAN.- Status LED: CONFIG_STATUS_LED Several configurations allow to display the current status using a LED. For instance, the LED will blink fast while running U-Boot-aesop code, stop blinking as soon as a reply to a BOOTP request was received, and start blinking slow once the Linux kernel is running (supported by a status LED driver in the Linux kernel). Defining CONFIG_STATUS_LED enables this feature in U-Boot-aesop.- CAN Support: CONFIG_CAN_DRIVER Defining CONFIG_CAN_DRIVER enables CAN driver support on those systems that support this (optional) feature, like the TQM8xxL modules.- I2C Support: CONFIG_HARD_I2C | CONFIG_SOFT_I2C These enable I2C serial bus commands. Defining either of (but not both of) CONFIG_HARD_I2C or CONFIG_SOFT_I2C will include the appropriate I2C driver for the selected cpu. This will allow you to use i2c commands at the u-boot command line (as long as you set CFG_CMD_I2C in CONFIG_COMMANDS) and communicate with i2c based realtime clock chips. See common/cmd_i2c.c for a description of the command line interface. CONFIG_HARD_I2C selects the CPM hardware driver for I2C. CONFIG_SOFT_I2C configures u-boot to use a software (aka bit-banging) driver instead of CPM or similar hardware support for I2C. There are several other quantities that must also be defined when you define CONFIG_HARD_I2C or CONFIG_SOFT_I2C. In both cases you will need to define CFG_I2C_SPEED to be the frequency (in Hz) at which you wish your i2c bus to run and CFG_I2C_SLAVE to be the address of this node (ie the cpu's i2c node address). Now, the u-boot i2c code for the mpc8xx (cpu/mpc8xx/i2c.c) sets the cpu up as a master node and so its address should therefore be cleared to 0 (See, eg, MPC823e User's Manual p.16-473). So, set CFG_I2C_SLAVE to 0. That's all that's required for CONFIG_HARD_I2C. If you use the software i2c interface (CONFIG_SOFT_I2C) then the following macros need to be defined (examples are from include/configs/lwmon.h): I2C_INIT (Optional). Any commands necessary to enable the I2C controller or configure ports. eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |= PB_SCL) I2C_PORT (Only for MPC8260 CPU). The I/O port to use (the code assumes both bits are on the same port). Valid values are 0..3 for ports A..D. I2C_ACTIVE The code necessary to make the I2C data line active (driven). If the data line is open collector, this define can be null. eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |= PB_SDA) I2C_TRISTATE The code necessary to make the I2C data line tri-stated (inactive). If the data line is open collector, this define can be null. eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA) I2C_READ Code that returns TRUE if the I2C data line is high, FALSE if it is low. eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0) I2C_SDA(bit) If <bit> is TRUE, sets the I2C data line high. If it is FALSE, it clears it (low). eg: #define I2C_SDA(bit) \ if(bit) immr->im_cpm.cp_pbdat |= PB_SDA; \ else immr->im_cpm.cp_pbdat &= ~PB_SDA I2C_SCL(bit) If <bit> is TRUE, sets the I2C clock line high. If it is FALSE, it clears it (low). eg: #define I2C_SCL(bit) \ if(bit) immr->im_cpm.cp_pbdat |= PB_SCL; \ else immr->im_cpm.cp_pbdat &= ~PB_SCL I2C_DELAY This delay is invoked four times per clock cycle so this controls the rate of data transfer. The data rate thus is 1 / (I2C_DELAY * 4). Often defined to be something like: #define I2C_DELAY udelay(2) CFG_I2C_INIT_BOARD When a board is reset during an i2c bus transfer chips might think that the current transfer is still in progress. On some boards it is possible to access the i2c SCLK line directly, either by using the processor pin as a GPIO or by having a second pin connected to the bus. If this option is defined a custom i2c_init_board() routine in boards/xxx/board.c is run early in the boot sequence. CONFIG_I2CFAST (PPC405GP|PPC405EP only) This option enables configuration of bi_iic_fast[] flags in u-boot bd_info structure based on u-boot environment variable "i2cfast". (see also i2cfast)- SPI Support: CONFIG_SPI Enables SPI driver (so far only tested with SPI EEPROM, also an instance works with Crystal A/D and D/As on the SACSng board) CONFIG_SPI_X Enables extended (16-bit) SPI EEPROM addressing. (symmetrical to CONFIG_I2C_X) CONFIG_SOFT_SPI Enables a software (bit-bang) SPI driver rather than using hardware support. This is a general purpose driver that only requires three general I/O port pins (two outputs, one input) to function. If this is defined, the board configuration must define several SPI configuration items (port pins to use, etc). For an example, see include/configs/sacsng.h.- FPGA Support: CONFIG_FPGA_COUNT Specify the number of FPGA devices to support. CONFIG_FPGA Used to specify the types of FPGA devices. For example, #define CONFIG_FPGA CFG_XILINX_VIRTEX2 CFG_FPGA_PROG_FEEDBACK Enable printing of hash marks during FPGA configuration. CFG_FPGA_CHECK_BUSY Enable checks on FPGA configuration interface busy status by the configuration function. This option will require a board or device specific function to be written. CONFIG_FPGA_DELAY If defined, a function that provides delays in the FPGA configuration driver. CFG_FPGA_CHECK_CTRLC Allow Control-C to interrupt FPGA configuration CFG_FPGA_CHECK_ERROR Check for configuration errors during FPGA bitfile loading. For example, abort during Virtex II configuration if the INIT_B line goes low (which indicated a CRC error). CFG_FPGA_WAIT_INIT Maximum time to wait for the INIT_B line to deassert after PROB_B has been deasserted during a Virtex II FPGA configuration sequence. The default time is 500 mS. CFG_FPGA_WAIT_BUSY Maximum time to wait for BUSY to deassert during Virtex II FPGA configuration. The default is 5 mS. CFG_FPGA_WAIT_CONFIG Time to wait after FPGA configuration. The default is 200 mS.- Configuration Management: CONFIG_IDENT_STRING If defined, this string will be added to the U-Boot-aesop version information (U_BOOT_VERSION)- Vendor Parameter Protection: U-Boot-aesop considers the values of the environment variables "serial#" (Board Serial Number) and "ethaddr" (Ethernet Address) to be parameters that are set once by the board vendor / manufacturer, and protects these variables from casual modification by the user. Once set, these variables are read-only, and write or delete attempts are rejected. You can change this behviour: If CONFIG_ENV_OVERWRITE is #defined in your config file, the write protection for vendor parameters is completely disabled. Anybody can change or delete these parameters. Alternatively, if you #define _both_ CONFIG_ETHADDR _and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default ethernet address is installed in the environment, which can be changed exactly ONCE by the user. [The serial# is unaffected by this, i. e. it remains read-only.]- Protected RAM: CONFIG_PRAM Define this variable to enable the reservation of "protected RAM", i. e. RAM which is not overwritten by U-Boot-aesop. Define CONFIG_PRAM to hold the number of kB you want to reserve for pRAM. You can overwrite this default value by defining an environment variable "pram" to the number of kB you want to reserve. Note that the board info structure will still show the full amount of RAM. If pRAM is reserved, a new environment variable "mem" will automatically be defined to hold the amount of remaining RAM in a form that can be passed as boot argument to Linux, for instance like that: setenv bootargs ... mem=\$(mem) saveenv This way you can tell Linux not to use this memory, either, which results in a memory region that will not be affected by reboots. *WARNING* If your board configuration uses automatic detection of the RAM size, you must make sure that this memory test is non-destructive. So far, the following board configurations are known to be "pRAM-clean": ETX094, IVMS8, IVML24, SPD8xx, TQM8xxL, HERMES, IP860, RPXlite, LWMON, LANTEC, PCU_E, FLAGADM, TQM8260- Error Recovery: CONFIG_PANIC_HANG Define this variable to stop the system in case of a fatal error, so that you have to reset it manually. This is probably NOT a good idea for an embedded system where you want to system to reboot automatically as fast as possible, but it may be useful during development since you can try to debug the conditions that lead to the situation. CONFIG_NET_RETRY_COUNT This variable defines the number of retries for network operations like ARP, RARP, TFTP, or BOOTP before giving up the operation. If not defined, a default value of 5 is used.- Command Interpreter: CFG_AUTO_COMPLETE Enable auto completion of commands using TAB. CFG_HUSH_PARSER Define this variable to enable the "hush" shell (from Busybox) as command line interpreter, thus enabling powerful command line syntax like if...then...else...fi conditionals or `&&' and '||' constructs ("shell scripts"). If undefined, you get the old, much simpler behaviour with a somewhat smaller memory footprint. CFG_PROMPT_HUSH_PS2 This defines the secondary prompt string, which is
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -