⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 210model.v

📁 《数字信号处理的FPGA实现》代码
💻 V
📖 第 1 页 / 共 3 页
字号:
//------------------------------------------------------------------------
//   This Verilog file was developed by Altera Corporation.  It may be freely
// copied and/or distributed at no cost.  Any persons using this file for
// any purpose do so at their own risk, and are responsible for the results
// of such use.  Altera Corporation does not guarantee that this file is
// complete, correct, or fit for any particular purpose.  NO WARRANTY OF
// ANY KIND IS EXPRESSED OR IMPLIED.  This notice must accompany any copy
// of this file.
//------------------------------------------------------------------------
//
//------------------------------------------------------------------------
// LPM Synthesizable Models 
//------------------------------------------------------------------------
// Version 1.0    Date 07/09/97
//
//------------------------------------------------------------------------
// Excluded Functions:
//
//  LPM_RAM_DQ, LPM_RAM_IO, LPM_ROM, and LPM_FSM, and LPM_TTABLE.
//
//------------------------------------------------------------------------
// Assumptions:
//
// 1. LPM_SVALUE, LPM_AVALUE, LPM_MODULUS, and LPM_NUMWORDS,
//    LPM_STRENGTH, LPM_DIRECTION, and LPM_PVALUE  default value is
//    string UNUSED.
//
//------------------------------------------------------------------------
// Verilog Language Issues:
//
// Two dimensional ports are not supported. Modules with two dimensional
// ports are implemented as one dimensional signal of (lpm_size * lpm_width)
// bits wide.
//
//------------------------------------------------------------------------
// Synthesis Issues:
// 
// 1.lpm_counter 
//
// Currently synthesis tools do not allow mixing of level and edge
// sensetive signals. To overcome that problem the "data" signal is
// removed from the clock always block of lpm_counter, however the
// synthesis result is accurate. For correct simulation add the "data"
// pin to the sensetivity list as follows:
//
//  always @( posedge clock or posedge aclr or posedge aset or 
//		posedge aload  or data)
//------------------------------------------------------------------------
// Modification History:
//
//------------------------------------------------------------------------
module lpm_abs ( result, overflow, data ) ;

  parameter lpm_type = "lpm_abs" ;
  parameter lpm_width = 1 ;

  input  [lpm_width-1:0] data ;
  output [lpm_width-1:0] result ;
  output overflow ;

  reg    [lpm_width-1:0] a_int ;
  reg    [lpm_width-1:0] result ;
  reg	 overflow;
  integer i;

  always @(data)
    begin

	overflow = 0;
	if ( data[lpm_width-1] == 1)
	    begin
		a_int = 0;
		for(i = 0; i < lpm_width - 1; i = i + 1)
	                a_int[i] = data[i] ^ 1;
		result = (a_int + 1) ;
		overflow = (result == ( 1<<(lpm_width -1))) ;
            end
	else result = data;
    end

endmodule // lpm_abs

module lpm_add_sub (  result, cout, overflow,
        add_sub, cin, dataa, datab, clock, aclr ) ;

  parameter lpm_type = "lpm_add_sub" ;
  parameter lpm_width = 1 ;
  parameter lpm_pipeline = 0 ;
  parameter lpm_representation = "UNSIGNED" ;
  parameter lpm_direction  = "UNUSED" ;

  input  [lpm_width-1:0] dataa, datab ;
  input  add_sub, cin ;
  input  clock ;
  input  aclr ;
  output [lpm_width-1:0] result ;
  output cout, overflow ;

  reg  [lpm_width-1:0] tmp_result ;
  reg  [lpm_width-1:0] tmp_result2 [lpm_pipeline:0] ;
  reg  [lpm_pipeline:0] tmp_cout2 ;
  reg  [lpm_pipeline:0] tmp_overflow2 ;
  reg  tmp_cout ;
  reg  tmp_overflow ;
  reg  [lpm_width-2:0] tmp_a, tmp_b;
  integer i, j, k, n;
  integer dataa_int, datab_int, result_int, compare, borrow; 


  always @(  cin or dataa or datab or add_sub )
    begin

	begin
		borrow = cin?0:1 ;
		// cout is the same for both signed and unsign representation.	
  		if (lpm_direction == "ADD" || add_sub == 1) 
                begin
                        {tmp_cout,tmp_result} = dataa + datab + cin ;
                        tmp_overflow = tmp_cout ;
                end
                else
  		if (lpm_direction == "SUB" || add_sub == 0) 
                begin
                        // subtraction
                        {tmp_overflow, tmp_result} = dataa - datab - borrow ;
                        tmp_cout = (dataa >= (datab+borrow))?1:0 ;
                end
	
		if(lpm_representation == "SIGNED")
		begin
			// convert to negative integer
			if(dataa[lpm_width-1] == 1)
			begin
				for(j = 0; j < lpm_width - 1; j = j + 1)
					tmp_a[j] = dataa[j] ^ 1;
				dataa_int = (tmp_a + 1) * (-1) ;
			end
			else dataa_int = dataa;

			// convert to negative integer
			if(datab[lpm_width-1] == 1)
			begin
				for(k = 0; k < lpm_width - 1; k = k + 1)
					tmp_b[k] = datab[k] ^ 1;
				datab_int = (tmp_b + 1) * (-1);
			end
			else datab_int = datab;

			// perform the addtion or subtraction operation
  			if(lpm_direction == "ADD" || add_sub == 1)
  				result_int = dataa_int + datab_int + cin ;
  			else
  			if(lpm_direction == "SUB" || add_sub == 0)
  				result_int = dataa_int - datab_int - borrow ;
			tmp_result = result_int ;

			// set the overflow
			compare = 1 << (lpm_width -1);
			if((result_int > (compare - 1)) || (result_int < (-1)*(compare)))
				tmp_overflow = 1;
			else
				tmp_overflow = 0;
		end

	end
	end

  always @(posedge clock or posedge aclr )
    begin
        if(aclr)
        begin
        for(i = 0; i <= lpm_pipeline; i = i + 1)
        begin
            tmp_result2[i] = 'b0 ;
            tmp_cout2[i] = 1'b0 ;
            tmp_overflow2[i] = 1'b0 ;
        end
        end
	else begin
        tmp_result2[lpm_pipeline] = tmp_result ;
        tmp_cout2[lpm_pipeline] = tmp_cout ;
        tmp_overflow2[lpm_pipeline] = tmp_overflow ;
        for(n = 0; n < lpm_pipeline; n = n +1)
        begin
            tmp_result2[n] = tmp_result2[n+1] ;
            tmp_cout2[n] = tmp_cout2[n+1];
            tmp_overflow2[n] = tmp_overflow2[n+1];
        end
        end
    end


  assign result = (lpm_pipeline >0) ? tmp_result2[0]:tmp_result ;
  assign cout = (lpm_pipeline >0) ? tmp_cout2[0]  : tmp_cout;
  assign overflow = (lpm_pipeline >0) ? tmp_overflow2[0] : tmp_overflow ;

endmodule // lpm_add_sub

module lpm_and ( result, data ) ;

  parameter lpm_type = "lpm_and" ;
  parameter lpm_width = 1 ;
  parameter lpm_size = 1 ;

  input  [(lpm_size * lpm_width)-1:0] data;
  output [lpm_width-1:0] result ;

  reg    [lpm_width-1:0] result ;
  integer i, j, k;

  always @(data)
    begin
	for ( i=0; i<lpm_width; i=i+1)
	begin
		result[i] = data[i];
		for ( j=1; j<lpm_size; j=j+1)
		begin
			k = j * lpm_width + i;
			result[i] = result[i] & data[k];
		end
	end
    end

endmodule // lpm_and

module lpm_bipad ( result, pad, data, enable ) ;

  parameter lpm_type = "lpm_bipad" ;
  parameter lpm_width = 1 ;

  input  [lpm_width-1:0] data ;
  input  enable ;
  inout  [lpm_width-1:0] pad ;
  output [lpm_width-1:0] result ;

  reg    [lpm_width-1:0] tmp_pad ;
  reg    [lpm_width-1:0] result ;

  always @(data or pad or enable)
    begin
	if (enable == 1)
	   begin
		tmp_pad = data;
		result = 'bz;
	   end
	else
	if (enable == 0)
	   begin
		result = pad;
		tmp_pad = 'bz;
	   end
    end
  assign pad = tmp_pad;

endmodule // lpm_bipad

module lpm_bustri ( result, tridata, data, enabledt, enabletr ) ;

  parameter lpm_type = "lpm_bustri" ;
  parameter lpm_width = 1 ;

  input  [lpm_width-1:0] data ;
  input  enabletr ;
  input  enabledt ;
  output [lpm_width-1:0] result ;
  inout  [lpm_width-1:0] tridata ;

  reg    [lpm_width-1:0] result ;
  reg  [lpm_width-1:0] tmp_tridata ;

  always @(data or tridata or enabletr or enabledt)
    begin
	if (enabledt == 0 && enabletr == 1)
	   begin
		result = tridata;
		tmp_tridata = 'bz;
	   end
      	else
	if (enabledt == 1 && enabletr == 0)
	    begin
		result = 'bz;
		tmp_tridata = data;
	    end
	else
	if (enabledt == 1 && enabletr == 1)
	    begin
		result = data;
		tmp_tridata = data;
	    end
	else
	    begin
		result = 'bz;
		tmp_tridata = 'bz;
	    end
    end

  assign tridata = tmp_tridata;
endmodule // lpm_bustri

module lpm_clshift ( result, overflow,
        underflow, data,
        direction, distance) ;

  parameter lpm_type        = "lpm_clshift" ;
  parameter lpm_width       = 1 ;
  parameter lpm_widthdist   = 1 ;
  parameter lpm_shifttype   = "LOGICAL" ;

  input  [lpm_width-1:0] data ;
  input  [lpm_widthdist-1:0] distance ;
  input  direction ;
  output [lpm_width-1:0] result;
  output overflow ;
  output underflow;

  reg    [lpm_width-1:0] ONES ;
  reg    [lpm_width-1:0] result ;
  reg 	 overflow, underflow;
  integer i;

//---------------------------------------------------------------//
  function [lpm_width+1:0] LogicShift ;
    input [lpm_width-1:0] data ;
    input [lpm_widthdist-1:0] dist ;
    input direction ;
    reg   [lpm_width-1:0] tmp_buf ;
    reg   overflow, underflow ;
	
    begin
	  tmp_buf = data ;
	  overflow = 1'b0 ;
	  underflow = 1'b0 ;
	  if((direction) && (dist > 0))	// shift right
		begin
			tmp_buf = data >> dist ;
			if((data != 0 ) && ((dist >= lpm_width) || (tmp_buf == 0) ))
				underflow = 1'b1;
		end
	  else if (dist > 0) // shift left
		begin
			tmp_buf = data << dist ;
			if((data != 0) && ((dist >= lpm_width)
				|| ((data >> (lpm_width-dist)) != 0)))
				overflow = 1'b1;
		end
	  LogicShift = {overflow,underflow,tmp_buf[lpm_width-1:0]} ;
    end
  endfunction

//---------------------------------------------------------------//
  function [lpm_width+1:0] ArithShift ;
    input [lpm_width-1:0] data ;
    input [lpm_widthdist-1:0] dist ;
    input direction ;
    reg   [lpm_width-1:0] tmp_buf ;
    reg   overflow, underflow ;
    begin
	  tmp_buf = data ;
	  overflow = 1'b0 ;
	  underflow = 1'b0 ;

	  if(direction && (dist > 0))	// shift right
		begin
			if(data[lpm_width-1] == 0) // positive number
			  begin
	  			tmp_buf = data >> dist ;
				if((data != 0) && ((dist >= lpm_width) || (tmp_buf == 0)))
					underflow = 1'b1 ;
			  end
			else // negative number
			  begin
	  			tmp_buf = (data >> dist) | (ONES << (lpm_width - dist)) ;
				if((data != ONES) && ((dist >= lpm_width-1) || (tmp_buf == ONES)))
					underflow = 1'b1 ;
			  end
		end
	  else if(dist > 0) // shift left
		begin
			tmp_buf = data << dist ;
			if(data[lpm_width-1] == 0) // positive number
			  begin
				if((data != 0) && ((dist >= lpm_width-1) 
				|| ((data >> (lpm_width-dist-1)) != 0)))
					overflow = 1'b1;
			  end
			else // negative number
			  begin
				if((data != ONES) 
				&& ((dist >= lpm_width) 
				 ||(((data >> (lpm_width-dist-1))|(ONES << (dist+1))) != ONES)))
					overflow = 1'b1;
			  end
		end
	  ArithShift = {overflow,underflow,tmp_buf[lpm_width-1:0]} ;
    end
  endfunction

//---------------------------------------------------------------//
  function [lpm_width-1:0] RotateShift ;
    input [lpm_width-1:0] data ;
    input [lpm_widthdist-1:0] dist ;
    input direction ;
    reg   [lpm_width-1:0] tmp_buf ;
    begin
	  tmp_buf = data ;
	  if((direction) && (dist > 0))	// shift right
		begin
			tmp_buf = (data >> dist) | (data << (lpm_width - dist)) ;
		end
	  else if (dist > 0) // shift left
		begin
			tmp_buf = (data << dist) | (data >> (lpm_width - dist)) ;
		end
	  RotateShift = tmp_buf[lpm_width-1:0] ;
    end
  endfunction
//---------------------------------------------------------------//

  initial
  begin
	for(i=0; i < lpm_width; i=i+1)
        	ONES[i] = 1'b1 ;
  end

  always @(data or direction or distance)
    begin
          // lpm_shifttype is optional and default to LOGICAL
        if ((lpm_shifttype == "LOGICAL") )

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -