⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 softfloat.c

📁 說明FPU的演算法以及浮點運算式中的加減乘除
💻 C
📖 第 1 页 / 共 5 页
字号:
    return a>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
{

    return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded
| to a subnormal number, and the underflow and inexact exceptions are raised
| if the abstract input cannot be represented exactly as a subnormal double-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
{
    int8 roundingMode;
    flag roundNearestEven;
    int16 roundIncrement, roundBits;
    flag isTiny;

    roundingMode = float_rounding_mode;
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    roundIncrement = 0x200;
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = 0x3FF;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = zSig & 0x3FF;
    if ( 0x7FD <= (bits16) zExp ) {
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
                  && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
           ) {
            float_raise( float_flag_overflow | float_flag_inexact );
            return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
        }
        if ( zExp < 0 ) {
            isTiny =
                   ( float_detect_tininess == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow );
        }
    }
    if ( roundBits ) float_exception_flags |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
 normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( zSig ) - 1;
    return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount );

}

#ifdef FLOATX80

/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

INLINE bits64 extractFloatx80Frac( floatx80 a )
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

INLINE int32 extractFloatx80Exp( floatx80 a )
{

    return a.high & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

INLINE flag extractFloatx80Sign( floatx80 a )
{

    return a.high>>15;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
 normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/

INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
{
    floatx80 z;

    z.low = zSig;
    z.high = ( ( (bits16) zSign )<<15 ) + zExp;
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80
 roundAndPackFloatx80(
     int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 )
{
    int8 roundingMode;
    flag roundNearestEven, increment, isTiny;
    int64 roundIncrement, roundMask, roundBits;

    roundingMode = float_rounding_mode;
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = roundMask;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = zSig0 & roundMask;
    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
            isTiny =
                   ( float_detect_tininess == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow );
            if ( roundBits ) float_exception_flags |= float_flag_inexact;
            zSig0 += roundIncrement;
            if ( (sbits64) zSig0 < 0 ) zExp = 1;
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( roundBits ) float_exception_flags |= float_flag_inexact;
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
    increment = ( (sbits64) zSig1 < 0 );
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            increment = 0;
        }
        else {
            if ( zSign ) {
                increment = ( roundingMode == float_round_down ) && zSig1;
            }
            else {
                increment = ( roundingMode == float_round_up ) && zSig1;
            }
        }
    }
    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
            float_raise( float_flag_overflow | float_flag_inexact );
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( zExp <= 0 ) {
            isTiny =
                   ( float_detect_tininess == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
            if ( isTiny && zSig1 ) float_raise( float_flag_underflow );
            if ( zSig1 ) float_exception_flags |= float_flag_inexact;
            if ( roundNearestEven ) {
                increment = ( (sbits64) zSig1 < 0 );
            }
            else {
                if ( zSign ) {
                    increment = ( roundingMode == float_round_down ) && zSig1;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -