📄 exp_psvm.asv
字号:
% PSVM Plots decision boundary of binary SVM classifier.
%
% Synopsis:
% h = psvm(...)
% psvm(model)
% psvm(model,options)
%
% Description:
% This function samples the Support Vector Machiones (SVM) decision
% function f(x) in 2D feature space and interpolates isoline
% width f(x)=0. The isolines f(x)=+1 and f(x)=-1 are plotted as well.
%
% Input:
% model [struct] Model of binary SVM classifier:
% .Alpha [1 x nsv] Weights of training data.
% .b [real] Bias of decision function.
% .sv.X [dim x nsv] Support vectors.
% .options.ker [string] Kernel function identifier.
% See 'help kernel' for more info.
% .options.arg [1 x nargs] Kernel argument(s).
%
% options [struct] Controls apperance:
% .background [1x1] If 1 then backgroud is colored according to
% the value of decision function (default 0).
% .sv [1x1] If 1 then the support vectors are marked (default 1).
% .sv_size [1x1] Marker size of the support vectors.
% .margin [1x1] If 1 then margin is displayed (default 1).
% .gridx [1x1] Sampling in x-axis (default 25).
% .gridy [1x1] Sampling in y-axis (default 25).
% .color [int] Color of decision boundary (default 'k').
%
% Output:
% h [struct] Handles of used graphical objects.
%
% Example:
% data = load('riply_trn');
% model = smo( data, struct('ker','rbf','arg',1,'C',10) );
% figure; ppatterns(data);
% psvm( model, struct('background',1) );
%
data = load('riply_trn');
t=cputime;
model = smo( data, struct('ker','rbf','arg',1,'C',10) );
TimeCost=cputime-t;
figure;title('')
ppatterns(data);
psvm( model, struct('background',1) );
hpop3 = uicontrol('Style', 'text',...
'String','时间耗费', 'Position', [300 -20 100 50], 'FontSize',16);
hpop4 = uicontrol('Style', 'text',...
'String', TimeCost, 'Position', [400 -20 100 50], 'FontSize',16);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -