📄 e_kernel_classifier.asv
字号:
% load input data
trn = load('riply_trn');
subplot(3,1,1);title('原始分布1');cla;
h1=ppatterns(trn); legend([h1],'Training set');
% train kernel PCA by greedy algorithm
options = struct('ker','rbf','arg',1,'new_dim',10);
kpca_model = greedykpca(trn.X,options);
% project data
map_trn = kernelproj(trn,kpca_model);
% train linear classifier
lin_model = fld(map_trn);
% combine linear rule and kernel PCA
kfd_model = lin2svm(kpca_model,lin_model);
% visualization
subplot(3,1,1);title('原始分布1');cla;
h1=ppatterns(trn);
pboundary(kfd_model);
ppatterns(kfd_model.sv.X,'ok',13);
% evaluation on testing data
subplot(3,1,2);title('原始分布2');
tst = load('riply_tst');
h2=ppatterns(tst);
ypred = svmclass(tst.X,kfd_model);
cerror(ypred,tst.y)
h2=ppatterns(ypred);
legend([h2],'Training set');
subplot(3,1,3);title('原始分布3');
h3=ppatterns(tst);
legend([h3],'Training set');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -