📄 draft-ietf-dnsext-ecc-key-07.txt
字号:
the order defined by the picture. Of the remaining parameters, PFHKQABCGY are variable length. When present, each is preceded by a one-octet length field as shown in the diagram above. The length field does not include itself. The length field may have values from 0 through 110. The parameter length in octets is determined by a conditional formula: If LL<=64, the parameter length is LL. If LL>64, the parameter length is 16 times (LL-60). In some cases, a parameter value of 0 is sensible, and MAY be represented by an LL value of 0, with the data field omitted. A length value of 0 represents a parameter value of 0, not an absent parameter. (The data portion occupies 0 space.) There is no requirement that a parameter be represented in the minimum number of octets; high-order 0 octets are allowed at the front end. Parameters are always right adjusted, in a field of length defined by LL. The octet-order is always most-significant first, least-significant last. The parameters H and K may have an optional sign bit stored in the unused high-order bit of their length fields. LP defines the length of the prime P. P must be an odd prime. The parameters LP,P are present if and only if the flag M=1. If M=0, the prime is 2. LF,F define an explicit field polynomial. This parameter pair is present only when FMT = 1. The length of a polynomial coefficient is ceiling(log2 P) bits. Coefficients are in the numerical range [0,P-1]. The coefficients are packed into fixed-width fields, from higher order to lower order. All coefficients must be present, including any 0s and also the leading coefficient (which is required to be 1). The coefficients are right justified into the octet string of length specified by LF, with the low-order "constant" coefficient at the right end. As a concession to storage efficiency, the higher order bits of the leading coefficient may be elided, discarding high- order 0 octets and reducing LF. The degree is calculated byR. Schroeppel, et al [Page 6]INTERNET-DRAFT ECC Keys in the DNS determining the bit position of the left most 1-bit in the F data (counting the right most bit as position 0), and dividing by ceiling(log2 P). The division must be exact, with no remainder. In this format, all of the other degree and field parameters are omitted. The next parameters will be LQ,Q. If FMT>=2, the degree of the field extension is specified explicitly, usually along with other parameters to define the field polynomial. DEG is a two octet field that defines the degree of the field extension. The finite field will have P^DEG elements. DEG is present when FMT>=2. When FMT=2, the field polynomial is specified implicitly. No other parameters are required to define the field; the next parameters present will be the LQ,Q pair. The implicit field poynomial is the lexicographically smallest irreducible (mod P) polynomial of the correct degree. The ordering of polynomials is by highest-degree coefficients first -- the leading coefficient 1 is most important, and the constant term is least important. Coefficients are ordered by sign-magnitude: 0 < 1 < -1 < 2 < -2 < ... The first polynomial of degree D is X^D (which is not irreducible). The next is X^D+1, which is sometimes irreducible, followed by X^D-1, which isn't. Assuming odd P, this series continues to X^D - (P-1)/2, and then goes to X^D + X, X^D + X + 1, X^D + X - 1, etc. When FMT=3, the field polynomial is a binomial, X^DEG + K. P must be odd. The polynomial is determined by the degree and the low order term K. Of all the field parameters, only the LK,K parameters are present. The high-order bit of the LK octet stores on optional sign for K; if the sign bit is present, the field polynomial is X^DEG - K. When FMT=4, the field polynomial is a trinomial, X^DEG + H*X^DEGH + K. When P=2, the H and K parameters are implicitly 1, and are omitted from the representation. Only DEG and DEGH are present; the next parameters are LQ,Q. When P>2, then LH,H and LK,K are specified. Either or both of LH, LK may contain a sign bit for its parameter. When FMT=5, then P=2 (only). The field polynomial is the exact quotient of a trinomial divided by a small polynomial, the trinomial divisor. The small polynomial is right-adjusted in the two octet field TRDV. DEG specifies the degree of the field. The degree of TRDV is calculated from the position of the high-order 1 bit. The trinomial to be divided is X^(DEG+degree(TRDV)) + X^DEGH + 1. If DEGH is 0, the middle term is omitted from the trinomial. The quotient must be exact, with no remainder. When FMT=6, then P=2 (only). The field polynomial is a pentanomial, with the degrees of the middle terms given by the three 2-octetR. Schroeppel, et al [Page 7]INTERNET-DRAFT ECC Keys in the DNS values DEGH, DEGI, DEGJ. The polynomial is X^DEG + X^DEGH + X^DEGI + X^DEGJ + 1. The values must satisfy the inequality DEG > DEGH > DEGI > DEGJ > 0. DEGH, DEGI, DEGJ are two-octet fields that define the degree of a term in a field polynomial. DEGH is present when FMT = 4, 5, or 6. DEGI and DEGJ are present only when FMT = 6. TRDV is a two-octet right-adjusted binary polynomial of degree < 16. It is present only for FMT=5. LH and H define the H parameter, present only when FMT=4 and P is odd. The high bit of LH is an optional sign bit for H. LK and K define the K parameter, present when FMT = 3 or 4, and P is odd. The high bit of LK is an optional sign bit for K. The remaining parameters are concerned with the elliptic curve and the signature algorithm. LQ defines the length of the prime Q. Q is a prime > 2^159. In all 5 of the parameter pairs LA+A,LB+B,LC+C,LG+G,LY+Y, the data member of the pair is an element from the finite field defined earlier. The length field defines a long octet string. Field elements are represented as (mod P) polynomials of degree < DEG, with DEG or fewer coefficients. The coefficients are stored from left to right, higher degree to lower, with the constant term last. The coefficients are represented as integers in the range [0,P-1]. Each coefficient is allocated an area of ceiling(log2 P) bits. The field representation is right-justified; the "constant term" of the field element ends at the right most bit. The coefficients are fitted adjacently without regard for octet boundaries. (Example: if P=5, three bits are used for each coefficient. If the field is GF[5^75], then 225 bits are required for the coefficients, and as many as 29 octets may be needed in the data area. Fewer octets may be used if some high-order coefficients are 0.) If a flag requires a field element to be negated, each non-zero coefficient K is replaced with P-K. To save space, 0 bits may be removed from the left end of the element representation, and the length field reduced appropriately. This would normally only happen with A,B,C, because the designer chose curve parameters with some high-order 0 coefficients or bits. If the finite field is simply (mod P), then the field elements are simply numbers (mod P), in the usual right-justified notation. If the finite field is GF[2^D], the field elements are the usual right- justified polynomial basis representation.R. Schroeppel, et al [Page 8]INTERNET-DRAFT ECC Keys in the DNS LA,A is the first parameter of the elliptic curve equation. When P>=5, the flag A = 1 indicates A should be negated (mod P). When P=2 (indicated by the flag M=0), the flag A = 1 indicates that the parameter pair LA,A is replaced by the two octet parameter ALTA. In this case, the parameter A in the curve equation is x^ALTA, where x is the field generator. Parameter A often has the value 0, which may be indicated by LA=0 (with no A data field), and sometimes A is 1, which may be represented with LA=1 and a data field of 1, or by setting the A flag and using an ALTA value of 0. LB,B is the second parameter of the elliptic curve equation. When P>=5, the flag B = 1 indicates B should be negated (mod P). When P=2 or 3, the flag B selects an alternate curve equation. LC,C is the third parameter of the elliptic curve equation, present only when P=2 (indicated by flag M=0) and flag B=1. LG,G defines a point on the curve, of order Q. The W-coordinate of the curve point is given explicitly; the Z-coordinate is implicit. LY,Y is the user's public signing key, another curve point of order Q. The W-coordinate is given explicitly; the Z- coordinate is implicit. The LY,Y parameter pair is always present.3. The Elliptic Curve Equation (The coordinates of an elliptic curve point are named W,Z instead of the more usual X,Y to avoid confusion with the Y parameter of the signing key.) The elliptic curve equation is determined by the flag octet, together with information about the prime P. The primes 2 and 3 are special; all other primes are treated identically. If M=1, the (mod P) or GF[P^D] case, the curve equation is Z^2 = W^3 + A*W + B. Z,W,A,B are all numbers (mod P) or elements of GF[P^D]. If A and/or B is negative (i.e., in the range from P/2 to P), and P>=5, space may be saved by putting the sign bit(s) in the A and B bits of the flags octet, and the magnitude(s) in the parameter fields. If M=1 and P=3, the B flag has a different meaning: it specifies an alternate curve equation, Z^2 = W^3 + A*W^2 + B. The middle term of the right-hand-side is different. When P=3, this equation is moreR. Schroeppel, et al [Page 9]INTERNET-DRAFT ECC Keys in the DNS commonly used. If M=0, the GF[2^N] case, the curve equation is Z^2 + W*Z = W^3 + A*W^2 + B. Z,W,A,B are all elements of the field GF[2^N]. The A parameter can often be 0 or 1, or be chosen as a single-1-bit value. The flag B is used to select an alternate curve equation, Z^2 + C*Z = W^3 + A*W + B. This is the only time that the C parameter is used.4. How do I Compute Q, G, and Y? The number of points on the curve is the number of solutions to the curve equation, + 1 (for the "point at infinity"). The prime Q must divide the number of points. Usually the curve is chosen first, then the number of points is determined with Schoof's algorithm. This number is factored, and if it has a large prime divisor, that number is taken as Q. G must be a point of order Q on the curve, satisfying the equation Q * G = the point at infinity (on the elliptic curve) G may be chosen by selecting a random [RFC 1750] curve point, and multiplying it by (number-of-points-on-curve/Q). G must not itself be the "point at infinity"; in this astronomically unlikely event, a new random curve point is recalculated. G is specified by giving its W-coordinate. The Z-coordinate is calculated from the curve equation. In general, there will be two possible Z values. The rule is to choose the "positive" value. In the (mod P) case, the two possible Z values sum to P. The smaller value is less than P/2; it is used in subsequent calculations. In GF[P^D] fields, the highest-degree non-zero coefficient of the field element Z is used; it is chosen to be less than P/2. In the GF[2^N] case, the two possible Z values xor to W (or to the parameter C with the alternate curve equation). The numerically smaller Z value (the one which does not contain the highest-order 1 bit of W (or C)) is used in subsequent calculations. Y is specified by giving the W-coordinate of the user's public signature key. The Z-coordinate value is determined from the curve equation. As with G, there are two possible Z values; the same rule is followed for choosing which Z to use.R. Schroeppel, et al [Page 10]INTERNET-DRAFT ECC Keys in the DNS During the key generation process, a random [RFC 1750] number X must be generated such that 1 <= X <= Q-1. X is the private key and is used in the final step of public key generation where Y is computed as Y = X * G (as points on the elliptic curve) If the Z-coordinate of the computed point Y is wrong (i.e., Z > P/2 in the (mod P) case, or the high-order non-zero coefficient of Z > P/2 in the GF[P^D] case, or Z sharing a high bit with W(C) in the GF[2^N] case), then X must be replaced with Q-X. This will correspond to the correct Z-coordinate.5. Elliptic Curve SIG Resource Records The signature portion of an RR RDATA area when using the EC algorithm, for example in the RRSIG and SIG [RFC records] RRs is shown below. 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | R, (length determined from LQ) .../ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | S, (length determined from LQ) .../ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ R and S are integers (mod Q). Their length is specified by the LQ field of the corresponding KEY RR and can also be calculated from the SIG RR's RDLENGTH. They are right justified, high-order-octet first. The same conditional formula for calculating the length from LQ is used as for all the other length fields above. The data signed is determined as specified in [RFC 2535]. Then the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -