📄 nbtheory.cpp
字号:
// nbtheory.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "nbtheory.h"
#include "modarith.h"
#include "algparam.h"
#include <math.h>
#include <vector>
NAMESPACE_BEGIN(CryptoPP)
const word s_lastSmallPrime = 32719;
struct NewPrimeTable
{
std::vector<word16> * operator()() const
{
const unsigned int maxPrimeTableSize = 3511;
std::auto_ptr<std::vector<word16> > pPrimeTable(new std::vector<word16>);
std::vector<word16> &primeTable = *pPrimeTable;
primeTable.reserve(maxPrimeTableSize);
primeTable.push_back(2);
unsigned int testEntriesEnd = 1;
for (unsigned int p=3; p<=s_lastSmallPrime; p+=2)
{
unsigned int j;
for (j=1; j<testEntriesEnd; j++)
if (p%primeTable[j] == 0)
break;
if (j == testEntriesEnd)
{
primeTable.push_back(p);
testEntriesEnd = STDMIN((size_t)54U, primeTable.size());
}
}
return pPrimeTable.release();
}
};
const word16 * GetPrimeTable(unsigned int &size)
{
const std::vector<word16> &primeTable = Singleton<std::vector<word16>, NewPrimeTable>().Ref();
size = primeTable.size();
return &primeTable[0];
}
bool IsSmallPrime(const Integer &p)
{
unsigned int primeTableSize;
const word16 * primeTable = GetPrimeTable(primeTableSize);
if (p.IsPositive() && p <= primeTable[primeTableSize-1])
return std::binary_search(primeTable, primeTable+primeTableSize, (word16)p.ConvertToLong());
else
return false;
}
bool TrialDivision(const Integer &p, unsigned bound)
{
unsigned int primeTableSize;
const word16 * primeTable = GetPrimeTable(primeTableSize);
assert(primeTable[primeTableSize-1] >= bound);
unsigned int i;
for (i = 0; primeTable[i]<bound; i++)
if ((p % primeTable[i]) == 0)
return true;
if (bound == primeTable[i])
return (p % bound == 0);
else
return false;
}
bool SmallDivisorsTest(const Integer &p)
{
unsigned int primeTableSize;
const word16 * primeTable = GetPrimeTable(primeTableSize);
return !TrialDivision(p, primeTable[primeTableSize-1]);
}
bool IsFermatProbablePrime(const Integer &n, const Integer &b)
{
if (n <= 3)
return n==2 || n==3;
assert(n>3 && b>1 && b<n-1);
return a_exp_b_mod_c(b, n-1, n)==1;
}
bool IsStrongProbablePrime(const Integer &n, const Integer &b)
{
if (n <= 3)
return n==2 || n==3;
assert(n>3 && b>1 && b<n-1);
if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
return false;
Integer nminus1 = (n-1);
unsigned int a;
// calculate a = largest power of 2 that divides (n-1)
for (a=0; ; a++)
if (nminus1.GetBit(a))
break;
Integer m = nminus1>>a;
Integer z = a_exp_b_mod_c(b, m, n);
if (z==1 || z==nminus1)
return true;
for (unsigned j=1; j<a; j++)
{
z = z.Squared()%n;
if (z==nminus1)
return true;
if (z==1)
return false;
}
return false;
}
bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
{
if (n <= 3)
return n==2 || n==3;
assert(n>3);
Integer b;
for (unsigned int i=0; i<rounds; i++)
{
b.Randomize(rng, 2, n-2);
if (!IsStrongProbablePrime(n, b))
return false;
}
return true;
}
bool IsLucasProbablePrime(const Integer &n)
{
if (n <= 1)
return false;
if (n.IsEven())
return n==2;
assert(n>2);
Integer b=3;
unsigned int i=0;
int j;
while ((j=Jacobi(b.Squared()-4, n)) == 1)
{
if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
return false;
++b; ++b;
}
if (j==0)
return false;
else
return Lucas(n+1, b, n)==2;
}
bool IsStrongLucasProbablePrime(const Integer &n)
{
if (n <= 1)
return false;
if (n.IsEven())
return n==2;
assert(n>2);
Integer b=3;
unsigned int i=0;
int j;
while ((j=Jacobi(b.Squared()-4, n)) == 1)
{
if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
return false;
++b; ++b;
}
if (j==0)
return false;
Integer n1 = n+1;
unsigned int a;
// calculate a = largest power of 2 that divides n1
for (a=0; ; a++)
if (n1.GetBit(a))
break;
Integer m = n1>>a;
Integer z = Lucas(m, b, n);
if (z==2 || z==n-2)
return true;
for (i=1; i<a; i++)
{
z = (z.Squared()-2)%n;
if (z==n-2)
return true;
if (z==2)
return false;
}
return false;
}
struct NewLastSmallPrimeSquared
{
Integer * operator()() const
{
return new Integer(Integer(s_lastSmallPrime).Squared());
}
};
bool IsPrime(const Integer &p)
{
if (p <= s_lastSmallPrime)
return IsSmallPrime(p);
else if (p <= Singleton<Integer, NewLastSmallPrimeSquared>().Ref())
return SmallDivisorsTest(p);
else
return SmallDivisorsTest(p) && IsStrongProbablePrime(p, 3) && IsStrongLucasProbablePrime(p);
}
bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level)
{
bool pass = IsPrime(p) && RabinMillerTest(rng, p, 1);
if (level >= 1)
pass = pass && RabinMillerTest(rng, p, 10);
return pass;
}
unsigned int PrimeSearchInterval(const Integer &max)
{
return max.BitCount();
}
static inline bool FastProbablePrimeTest(const Integer &n)
{
return IsStrongProbablePrime(n,2);
}
AlgorithmParameters<AlgorithmParameters<AlgorithmParameters<NullNameValuePairs, Integer::RandomNumberType>, Integer>, Integer>
MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength)
{
if (productBitLength < 16)
throw InvalidArgument("invalid bit length");
Integer minP, maxP;
if (productBitLength%2==0)
{
minP = Integer(182) << (productBitLength/2-8);
maxP = Integer::Power2(productBitLength/2)-1;
}
else
{
minP = Integer::Power2((productBitLength-1)/2);
maxP = Integer(181) << ((productBitLength+1)/2-8);
}
return MakeParameters("RandomNumberType", Integer::PRIME)("Min", minP)("Max", maxP);
}
class PrimeSieve
{
public:
// delta == 1 or -1 means double sieve with p = 2*q + delta
PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta=0);
bool NextCandidate(Integer &c);
void DoSieve();
static void SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv);
Integer m_first, m_last, m_step;
signed int m_delta;
word m_next;
std::vector<bool> m_sieve;
};
PrimeSieve::PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta)
: m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0)
{
DoSieve();
}
bool PrimeSieve::NextCandidate(Integer &c)
{
m_next = std::find(m_sieve.begin()+m_next, m_sieve.end(), false) - m_sieve.begin();
if (m_next == m_sieve.size())
{
m_first += m_sieve.size()*m_step;
if (m_first > m_last)
return false;
else
{
m_next = 0;
DoSieve();
return NextCandidate(c);
}
}
else
{
c = m_first + m_next*m_step;
++m_next;
return true;
}
}
void PrimeSieve::SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv)
{
if (stepInv)
{
unsigned int sieveSize = sieve.size();
word j = word((word32(p-(first%p))*stepInv) % p);
// if the first multiple of p is p, skip it
if (first.WordCount() <= 1 && first + step*j == p)
j += p;
for (; j < sieveSize; j += p)
sieve[j] = true;
}
}
void PrimeSieve::DoSieve()
{
unsigned int primeTableSize;
const word16 * primeTable = GetPrimeTable(primeTableSize);
const unsigned int maxSieveSize = 32768;
unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();
m_sieve.clear();
m_sieve.resize(sieveSize, false);
if (m_delta == 0)
{
for (unsigned int i = 0; i < primeTableSize; ++i)
SieveSingle(m_sieve, primeTable[i], m_first, m_step, m_step.InverseMod(primeTable[i]));
}
else
{
assert(m_step%2==0);
Integer qFirst = (m_first-m_delta) >> 1;
Integer halfStep = m_step >> 1;
for (unsigned int i = 0; i < primeTableSize; ++i)
{
word16 p = primeTable[i];
word16 stepInv = m_step.InverseMod(p);
SieveSingle(m_sieve, p, m_first, m_step, stepInv);
word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
}
}
}
bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
{
assert(!equiv.IsNegative() && equiv < mod);
Integer gcd = GCD(equiv, mod);
if (gcd != Integer::One())
{
// the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
{
p = gcd;
return true;
}
else
return false;
}
unsigned int primeTableSize;
const word16 * primeTable = GetPrimeTable(primeTableSize);
if (p <= primeTable[primeTableSize-1])
{
const word16 *pItr;
--p;
if (p.IsPositive())
pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
else
pItr = primeTable;
while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
++pItr;
if (pItr < primeTable+primeTableSize)
{
p = *pItr;
return p <= max;
}
p = primeTable[primeTableSize-1]+1;
}
assert(p > primeTable[primeTableSize-1]);
if (mod.IsOdd())
return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);
p += (equiv-p)%mod;
if (p>max)
return false;
PrimeSieve sieve(p, max, mod);
while (sieve.NextCandidate(p))
{
if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
return true;
}
return false;
}
// the following two functions are based on code and comments provided by Preda Mihailescu
static bool ProvePrime(const Integer &p, const Integer &q)
{
assert(p < q*q*q);
assert(p % q == 1);
// this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
// for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
// or be prime. The next two lines build the discriminant of a quadratic equation
// which holds iff p is built up of two factors (excercise ... )
Integer r = (p-1)/q;
if (((r%q).Squared()-4*(r/q)).IsSquare())
return false;
unsigned int primeTableSize;
const word16 * primeTable = GetPrimeTable(primeTableSize);
assert(primeTableSize >= 50);
for (int i=0; i<50; i++)
{
Integer b = a_exp_b_mod_c(primeTable[i], r, p);
if (b != 1)
return a_exp_b_mod_c(b, q, p) == 1;
}
return false;
}
Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int pbits)
{
Integer p;
Integer minP = Integer::Power2(pbits-1);
Integer maxP = Integer::Power2(pbits) - 1;
if (maxP <= Integer(s_lastSmallPrime).Squared())
{
// Randomize() will generate a prime provable by trial division
p.Randomize(rng, minP, maxP, Integer::PRIME);
return p;
}
unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36);
Integer q = MihailescuProvablePrime(rng, qbits);
Integer q2 = q<<1;
while (true)
{
// this initializes the sieve to search in the arithmetic
// progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,
// with q the recursively generated prime above. We will be able
// to use Lucas tets for proving primality. A trick of Quisquater
// allows taking q > cubic_root(p) rather then square_root: this
// decreases the recursion.
p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2);
PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);
while (sieve.NextCandidate(p))
{
if (FastProbablePrimeTest(p) && ProvePrime(p, q))
return p;
}
}
// not reached
return p;
}
Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
{
const unsigned smallPrimeBound = 29, c_opt=10;
Integer p;
unsigned int primeTableSize;
const word16 * primeTable = GetPrimeTable(primeTableSize);
if (bits < smallPrimeBound)
{
do
p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
while (TrialDivision(p, 1 << ((bits+1)/2)));
}
else
{
const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
double relativeSize;
do
relativeSize = pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
while (bits * relativeSize >= bits - margin);
Integer a,b;
Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
Integer I = Integer::Power2(bits-2)/q;
Integer I2 = I << 1;
unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
bool success = false;
while (!success)
{
p.Randomize(rng, I, I2, Integer::ANY);
p *= q; p <<= 1; ++p;
if (!TrialDivision(p, trialDivisorBound))
{
a.Randomize(rng, 2, p-1, Integer::ANY);
b = a_exp_b_mod_c(a, (p-1)/q, p);
success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
}
}
}
return p;
}
Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -