📄 ml_test.m
字号:
function [f,labels,error]=ml_test(classifier,X,Y)% ML_TEST Uses a classifier to classify data in X% ----------------------------------------------------------------------------%%% Usage: % [f,labels,error]=ml_test(classifier,X,Y)%% Inputs:% classifier: A classifier structure returned by ml_train or saveclassifier% X : n x d matrix (n examples in d dimensions)% Y : optional column vector of labels. Values in -1,0,+1 % If Y is provided, computes error rates % Note: Y is allowd to be in [-1,0,+1]% The error computation is done over labeled points [-1,+1]% % Outputs: % f : real valued classifier output% labels: f thresholded at b % error: error rate over labeled part of Y% % Author: Vikas Sindhwani vikass@cs.uchicago.edu% June 2004%------------------------------------------------------------------------------%% read classifierKernel=classifier.Kernel;KernelParam=classifier.KernelParam;alpha=classifier.alpha;b=classifier.b;xtrain=classifier.xtrain;% compute test kernelK=calckernel(Kernel,KernelParam,xtrain,X);f=K*alpha - b;labels=sign(f);% compute error rate over labeled part of test setif exist('Y','var')==1 test=find(Y); error=sum(labels(test)~=Y(test))/length(test)*100;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -