⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 contents.m

📁 使用matlab进行实现的kmeans算法。数据集。
💻 M
字号:
% Clustering Toolbox% % Basic algorithms:% %  agglom        : Basic Agglomerative Clustering%  kmeans        : k-means clustering%  mixtureEM     : cluster by estimating a mixture of Gaussians%  mixtureSelect : estimate a mixture with unknown K using BIC%  EM            : Expectation-Maximization%% Demos:% %  irispca     : show first two principal components of iris data%  agglomdemo  : demonstrate agglomerative clustering%  kmeansdemo  : demonstrate k-means clustering%  loadiris    : loads the cluster IRIS benchmark data%  EMintro     : an introduction to EM as lower bound maximization%  EMdemo      : demonstrate EM clustering%  selectdemo  : demonstrate mixtureSelect%  clustertest : test clusterstats with really simple distribution%  % Cluster quality:%  %  bscatter     : between-cluster scatter matrix%  clusterstats : computes the statistics for each cluster%  critsse      : computes Sum-of-Squared-Error Criterion for a given clustering%  misclass     : calculates percent of misclassified samples in clusters%  scatter      : scatter matrix for samples x%  wscatter     : within-cluster scatter matrix% % Auxiliary Code:%  %  assign        : assign each sample in t to nearest cluster center, i.e. VQ%  cachedSqrDist : calculate a nt*nx matrix containing weighted squared error%  cluster       : return the matrix of samples in cluster j according to c%  dist1         : calculate a nt*nx vector containing distances between all points%  dmean         : distance between means of two clusters%  majority      : returns (weighted) majority vote%  majority1     : returns weighted majority vote for a *row vector*%  manhattan     : calculate a 1*n vector D containing manhattan distances from z%  misclass1     : calculates % misclassified samples in a cluster%  move          : move sample x(s) from its current cluster c(s) to cluster j%  nearest       : return the vector zj in z that is nearest to xi%  printClusters : print out j-component of the data in each cluster%  projectpca    : project data matrix on first nr eigenvectors (using svds)%  showclusters  : show clusters using colors%  showmixture   : show mixture graphically%  showpca2      : project data matrix on 2 first eigenvectors and show them%  showpca3      : project data matrix on 3 first eigenvectors and show them%  sqrDist       : calculate a nt*nx matrix containing weighted squared error

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -