📄 contents.m
字号:
% Clustering Toolbox% % Basic algorithms:% % agglom : Basic Agglomerative Clustering% kmeans : k-means clustering% mixtureEM : cluster by estimating a mixture of Gaussians% mixtureSelect : estimate a mixture with unknown K using BIC% EM : Expectation-Maximization%% Demos:% % irispca : show first two principal components of iris data% agglomdemo : demonstrate agglomerative clustering% kmeansdemo : demonstrate k-means clustering% loadiris : loads the cluster IRIS benchmark data% EMintro : an introduction to EM as lower bound maximization% EMdemo : demonstrate EM clustering% selectdemo : demonstrate mixtureSelect% clustertest : test clusterstats with really simple distribution% % Cluster quality:% % bscatter : between-cluster scatter matrix% clusterstats : computes the statistics for each cluster% critsse : computes Sum-of-Squared-Error Criterion for a given clustering% misclass : calculates percent of misclassified samples in clusters% scatter : scatter matrix for samples x% wscatter : within-cluster scatter matrix% % Auxiliary Code:% % assign : assign each sample in t to nearest cluster center, i.e. VQ% cachedSqrDist : calculate a nt*nx matrix containing weighted squared error% cluster : return the matrix of samples in cluster j according to c% dist1 : calculate a nt*nx vector containing distances between all points% dmean : distance between means of two clusters% majority : returns (weighted) majority vote% majority1 : returns weighted majority vote for a *row vector*% manhattan : calculate a 1*n vector D containing manhattan distances from z% misclass1 : calculates % misclassified samples in a cluster% move : move sample x(s) from its current cluster c(s) to cluster j% nearest : return the vector zj in z that is nearest to xi% printClusters : print out j-component of the data in each cluster% projectpca : project data matrix on first nr eigenvectors (using svds)% showclusters : show clusters using colors% showmixture : show mixture graphically% showpca2 : project data matrix on 2 first eigenvectors and show them% showpca3 : project data matrix on 3 first eigenvectors and show them% sqrDist : calculate a nt*nx matrix containing weighted squared error
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -