📄 norm.tex
字号:
\documentclass{article}\pagestyle{empty}\oddsidemargin 2.1mm\textwidth 155mm\topmargin -12mm\textheight 230mm\def\IR{\mbox{I\kern-0.22em R}}\begin{document}%-----------------------------------------------------------------------\subsection*{Normalization of the generalized multidimensional Gaussian distribution}Jacobi formula for the surface of the $n$-dimensional (hyper)sphere\cite[0.1.6, p.~15]{Bronstein et al 1996}:\[ A_n(r) = \frac{2\pi^{\frac{n}{2}} r^{n-1}}{\Gamma(\frac{n}{2})}, \qquad n \ge 2. \]Integral formula \cite[0.9.6, No.~1, p.~184]{Bronstein et al 1996}:\[ \int_0^\infty z^\beta e^{-\alpha z} \mbox{d}z = \frac{\Gamma(\beta+1)}{\alpha^{\beta+1}}, \qquad \alpha, \beta \in \IR, \quad \alpha > 0, \quad \beta > -1. \]In order to determine the normalization factor, we have to computethe following integral\[ \int_0^\infty \underbrace{\frac{2\pi^{\frac{n}{2}} x^{n-1}} {\Gamma\!\left(\frac{n}{2}\right)}} _{\mbox{\parbox{32mm}{surface area of the $n$-di\-men\-sional (hyper) sphere with radius $x$}}} \quad \underbrace{e^{-\frac{1}{2}(bx^a+c)} \hbox to0pt{$\phantom{\displaystyle \frac{\frac{n}{2}}{\left(\frac{n}{2}\right)}}$\hss}} _{\mbox{\parbox{18mm}{generalized \\ distribution \\ function}}} \quad \mbox{d}x. \]Note that this formula works also for $n = 1$, although the formulafor the surface of the $n$-dimensional (hyper)sphere is valid onlyfor $n \ge 2$. For $n = 1$ the fraction evaluates to 2, which takescare of the fact that the integral has to be doubled in order to takethe area from $-\infty$ to 0 into account.\begin{eqnarray*}\int_0^\infty \frac{2\pi^{\frac{n}{2}} x^{n-1}} {\Gamma\!\left(\frac{n}{2}\right)} \;e^{-\frac{1}{2}(bx^a+c)} \;\mbox{d}x& = & \frac{2\pi^{\frac{n}{2}} e^{-\frac{c}{2}}} {\Gamma\!\left(\frac{n}{2}\right)} \int_0^\infty x^{n-1} e^{-\frac{1}{2}bx^a} \;\mbox{d}x\end{eqnarray*}In order to reduce this integral to the known formula stated above,we substitute $z$ for $x^a$.\begin{eqnarray*}z = x^a& \Rightarrow & x = \sqrt[a]{z}, \\& \Rightarrow & \frac{\mbox{d}z}{\mbox{d}x} = a x^{a-1}~~\Rightarrow~~ \mbox{d}z = a (\sqrt[a]{z})^{a-1} \mbox{d}x = a z^{\frac{a-1}{a}} \mbox{d}x~~\Rightarrow~~ \mbox{d}x = \frac{\mbox{d}z}{a\,z^{\frac{a-1}{a}}} = \frac{1}{a} z^{\frac{1-a}{a}} \mbox{d}z, \\& \Rightarrow & x^{n-1} = (\sqrt[a]{z})^{n-1} = z^{\frac{n-1}{a}}.\end{eqnarray*}Note that the integration bounds---from 0 to $\infty$---do not change.By inserting the above equations into the integral formula we arrive at\begin{eqnarray*}\int_0^\infty \frac{2\pi^{\frac{n}{2}} x^{n-1}} {\Gamma\!\left(\frac{n}{2}\right)} \;e^{-\frac{1}{2}(bx^a+c)} \;\mbox{d}x& = & \frac{2\pi^{\frac{n}{2}} e^{-\frac{c}{2}}} {\Gamma\!\left(\frac{n}{2}\right)} \int_0^\infty x^{n-1} e^{-\frac{1}{2}bx^a} \;\mbox{d}x \\& = & \frac{2\pi^{\frac{n}{2}} e^{-\frac{c}{2}}} {\Gamma\!\left(\frac{n}{2}\right)} \int_0^\infty z^{\frac{n-1}{a}} e^{-\frac{1}{2}bz} \frac{1}{a} z^{\frac{1-a}{a}} \mbox{d}z \\& = & \frac{2\pi^{\frac{n}{2}} e^{-\frac{c}{2}}} {\Gamma\!\left(\frac{n}{2}\right) a} \int_0^\infty z^{\frac{n}{a}-1} e^{-\frac{1}{2}bz} \mbox{d}z \\& = & \frac{2\pi^{\frac{n}{2}} e^{-\frac{c}{2}}} {\Gamma\!\left(\frac{n}{2}\right) a} \frac{\Gamma\!\left(\frac{n}{a}\right)} {\left(\frac{b}{2}\right)^{\frac{n}{a}}}.\end{eqnarray*}Therefore the desired normalization factor is\[ \gamma = \frac{\Gamma\!\left(\frac{n}{2}\right) a \left(\frac{b}{2}\right)^{\frac{n}{a}}} {2\pi^{\frac{n}{2}} e^{-\frac{c}{2}} \Gamma\!\left(\frac{n}{a}\right)}. \]%-----------------------------------------------------------------------\newpage\subsection*{Normalization of the multidimensional Cauchy distribution}Integral formula \cite[0.9.6, No.~53, p.~189]{Bronstein et al 1996}:\[ \int_0^\infty \frac{z^{\alpha-1}}{1 +z^\beta} \mbox{d}z = \frac{\pi}{\beta \sin \frac{\alpha \pi}{\beta}}, \qquad \alpha, \beta \in \IR, \quad 0 < \alpha < \beta. \]In order to determine the normalization factor, we have to computethe following integral\[ \int_0^\infty \underbrace{\frac{2\pi^{\frac{n}{2}} x^{n-1}} {\Gamma\!\left(\frac{n}{2}\right)}} _{\mbox{\parbox{32mm}{surface area of the $n$-di\-men\-sional (hyper) sphere with radius $x$}}} \quad \underbrace{\frac{1}{bx^a+c} \hbox to0pt{$\phantom{\displaystyle \frac{\frac{n}{2}}{\left(\frac{n}{2}\right)}}$\hss}} _{\mbox{\parbox{18mm}{distribution \\ function}}} \quad \mbox{d}x. \]As in the preceding section this formula also works for $n = 1$.\begin{eqnarray*}\int_0^\infty \frac{2\pi^{\frac{n}{2}} x^{n-1}} {\Gamma\!\left(\frac{n}{2}\right)} \frac{1}{bx^a+c} \;\mbox{d}x& = & \frac{2\pi^{\frac{n}{2}}} {\Gamma\!\left(\frac{n}{2}\right)c} \int_0^\infty \frac{x^{n-1}}{\frac{b}{c}x^a +1} \;\mbox{d}x\end{eqnarray*}In order to reduce this integral to the known formula stated above,we substitute $z$ for $x \left(\frac{b}{c}\right)^{\frac{1}{a}}$.\begin{eqnarray*}z = x\left(\frac{b}{c}\right)^{\frac{1}{a}}& \Rightarrow & x = z\left(\frac{c}{b}\right)^{\frac{1}{a}}, \\& \Rightarrow & \frac{\mbox{d}z}{\mbox{d}x} = \left(\frac{b}{c}\right)^{\frac{1}{a}}~~\Rightarrow~~ \mbox{d}z = \left(\frac{b}{c}\right)^{\frac{1}{a}}\mbox{d}x~~\Rightarrow~~ \mbox{d}x = \left(\frac{c}{b}\right)^{\frac{1}{a}}\mbox{d}z, \\& \Rightarrow & x^{n-1} = \left(z\left(\frac{c}{b}\right)^{\frac{1}{a}}\right)^{n-1} = z^{n-1}\left(\frac{c}{b}\right)^{\frac{n-1}{a}}.\end{eqnarray*}Note that the integration bounds---from 0 to $\infty$---do not change.By inserting the above equations into the integral formula we arrive at\begin{eqnarray*}\int_0^\infty \frac{2\pi^{\frac{n}{2}} x^{n-1}} {\Gamma\!\left(\frac{n}{2}\right)} \frac{1}{bx^a+c} \;\mbox{d}x& = & \frac{2\pi^{\frac{n}{2}}} {\Gamma\!\left(\frac{n}{2}\right)c} \int_0^\infty \frac{x^{n-1}}{\frac{b}{c}x^a +1} \;\mbox{d}x \\& = & \frac{2\pi^{\frac{n}{2}}} {\Gamma\!\left(\frac{n}{2}\right)c} \int_0^\infty \frac{z^{n-1}\left(\frac{c}{b}\right)^{\frac{n-1}{a}}} {z^a +1} \left(\frac{c}{b}\right)^{\frac{1}{a}} \mbox{d}z \\& = & \frac{2\pi^{\frac{n}{2}}} {\Gamma\!\left(\frac{n}{2}\right)c} \left(\frac{c}{b}\right)^{\frac{n}{a}} \int_0^\infty \frac{z^{n-1}}{1 +z^a} \;\mbox{d}z \\& = & \frac{2\pi^{\frac{n}{2}}\left(\frac{c}{b}\right)^{\frac{n}{a}}} {\Gamma\!\left(\frac{n}{2}\right)c} \frac{\pi}{a \,\sin\frac{n \pi}{a}}.\end{eqnarray*}Therefore the desired normalization factor is\[ \gamma = \frac{\Gamma\!\left(\frac{n}{2}\right) ac \,\sin\frac{n \pi}{a}} {2\pi^{\frac{n}{2}+1} \left(\frac{c}{b}\right)^{\frac{n}{a}}}. \]%-----------------------------------------------------------------------\def\etal{{\it et al.~}}\begin{thebibliography}{99}\bibitem[Bronstein \etal 1996]{Bronstein et al 1996} I.N.~Bronstein, K.A.~Semendjajew, G.~Grosche, V.~Ziegler, and D.~Ziegler. {\it Teubner Taschenbuch der Mathematik}, Part~1. Teubner, Leipzig, Germany 1996\end{thebibliography}%-----------------------------------------------------------------------\end{document}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -