⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch02.2.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 4 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML EXPERIMENTAL 970324//EN">

<HTML>

<HEAD>

<META NAME="GENERATOR" CONTENT="Adobe FrameMaker 5.5/HTML Export Filter">



<TITLE> 2.2&nbsp;The CMOS Process</TITLE></HEAD><!--#include file="top.html"--><!--#include file="header.html"-->



<DIV>

<P>[&nbsp;<A HREF="CH02.htm">Chapter&nbsp;start</A>&nbsp;]&nbsp;[&nbsp;<A HREF="CH02.1.htm">Previous&nbsp;page</A>&nbsp;]&nbsp;[&nbsp;<A HREF="CH02.3.htm">Next&nbsp;page</A>&nbsp;]</P><!--#include file="AmazonAsic.html"--><HR></DIV>

<H1 CLASS="Heading1">

<A NAME="pgfId=41692">

 </A>

2.2&nbsp;The CMOS Process</H1>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=179450">

 </A>

Figure&nbsp;2.6 outlines the steps to create an integrated circuit. The starting material is silicon, Si, refined from quartzite (with less than 1 impurity in 10<SUP CLASS="Superscript">

10</SUP>

 silicon atoms). We draw a single-crystal silicon <SPAN CLASS="Definition">

boule</SPAN>

 (or ingot) from a crucible containing a melt at approximately 1500 &#176;C (the melting point of silicon at 1&nbsp;atm. pressure is 1414 &#176;C). This method is known as Czochralski growth. Acceptor (<SPAN CLASS="EmphasisPrefix">

p</SPAN>

-type) or donor (<SPAN CLASS="EmphasisPrefix">

n</SPAN>

-type) dopants may be introduced into the melt to alter the type of silicon grown. </P>

<P CLASS="Body">

<A NAME="pgfId=179456">

 </A>

The boule is sawn to form thin circular wafers (6, 8, or 12 inches in diameter, and typically 600 <SPAN CLASS="Symbol">

m</SPAN>

m thick), and a flat is ground (the primary flat), perpendicular to the &lt;110&gt; crystal axis&#8212;as a &#8220;this edge down&#8221; indication. The boule is drawn so that the wafer surface is either in the (111) or (100) crystal planes. A smaller secondary flat indicates the wafer crystalline orientation and doping type. A typical submicron CMOS processes uses <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-type (100) wafers with a resistivity of approximately 10 <SPAN CLASS="Symbol">

W</SPAN>

cm&#8212;this type of wafer has two flats, 90&#176; apart. Wafers are made by chemical companies and sold to the IC manufacturers. A blank 8-inch wafer costs about $100.</P>

<P CLASS="Body">

<A NAME="pgfId=179473">

 </A>

To begin IC fabrication we place a batch of wafers (a <SPAN CLASS="Definition">

wafer lot</SPAN>

) on a <SPAN CLASS="Definition">

boat </SPAN>

and grow a layer (typically a few thousand angstroms) of <SPAN CLASS="Definition">

silicon dioxide</SPAN>

, SiO<SUB CLASS="Subscript">

2</SUB>

, using a furnace. Silicon is used in the semiconductor industry not so much for the properties of silicon, but because of the physical, chemical, and electrical properties of its native oxide, SiO<SUB CLASS="Subscript">

2</SUB>

. An IC fabrication <SPAN CLASS="Definition">

process</SPAN>

 contains a series of masking steps (that in turn contain other steps) to create the layers that define the transistors and metal interconnect.</P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=179466">

 </A>

&nbsp;</P>

<DIV>

<IMG SRC="CH02-8.gif">

</DIV>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigureTitle">

<A NAME="pgfId=179470">

 </A>

FIGURE&nbsp;2.6&nbsp;IC fabrication. Grow crystalline silicon (1); make a wafer (2&#8211;3); grow a silicon dioxide (oxide) layer in a furnace (4); apply liquid photoresist (resist) (5); mask exposure (6); a cross-section through a wafer showing the developed resist (7); etch the oxide layer (8); ion implantation (9&#8211;10); strip the resist (11); strip the oxide (12). Steps similar to 4&#8211;12 are repeated for each layer (typically 12&#8211;20 times for a CMOS process). </P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=178826">

 </A>

Each masking step starts by spinning a thin layer (approximately 1 <SPAN CLASS="Symbol">

m</SPAN>

m) of liquid photoresist (<SPAN CLASS="Definition">

resist</SPAN>

) onto each wafer. The wafers are baked at about 100 &#176;C to remove the solvent and harden the resist before being exposed to ultraviolet (UV) light (typically less than 200 nm wavelength) through a <SPAN CLASS="Definition">

mask</SPAN>

. The UV light alters the structure of the resist, allowing it to be removed by developing. The exposed oxide may then be <SPAN CLASS="Definition">

etched</SPAN>

 (removed). Dry <SPAN CLASS="Definition">

plasma etching</SPAN>

 etches in the vertical direction much faster than it does horizontally (an <SPAN CLASS="Definition">

anisotropic</SPAN>

 etch). Wet etch techniques are usually <SPAN CLASS="Definition">

isotropic</SPAN>

. The resist functions as a mask during the etch step and transfers the desired pattern to the oxide layer.</P>

<P CLASS="Body">

<A NAME="pgfId=195463">

 </A>

Dopant ions are then introduced into the exposed silicon areas. Figure&nbsp;2.6 illustrates the use of <SPAN CLASS="Definition">

ion implantation</SPAN>

. An <SPAN CLASS="Definition">

ion implanter</SPAN>

 is a cross between a TV and a mass spectrometer and fires dopant ions into the silicon wafer. Ions can only penetrate materials to a depth (the <SPAN CLASS="Definition">

range</SPAN>

, normally a few microns) that depends on the closely controlled <SPAN CLASS="Definition">

implant energy</SPAN>

 (measured in keV&#8212;usually between 10 and 100 keV; an electron volt, 1 eV, is  1.6 <SPAN CLASS="Symbol">

&#165;</SPAN>

 10<SUP CLASS="Superscript">

&#8211;19</SUP>

 J). By using layers of resist, oxide, and polysilicon we can prevent dopant ions from reaching the silicon surface and thus block the silicon from receiving an <SPAN CLASS="Definition">

implant</SPAN>

. We control the doping level by counting the number of ions we implant (by integrating the ion-beam current). The <SPAN CLASS="Definition">

implant dose</SPAN>

 is measured in atoms/cm<SUP CLASS="Superscript">

2</SUP>

 (typical doses are from 10<SUP CLASS="Superscript">

13</SUP>

 to 10<SUP CLASS="Superscript">

15</SUP>

 cm<SUP CLASS="Superscript">

&#8211;2</SUP>

). As an alternative to ion implantation we may instead strip the resist and introduce dopants by diffusion from a gaseous source in a furnace. </P>

<P CLASS="Body">

<A NAME="pgfId=206789">

 </A>

Once we have completed the transistor diffusion layers we can deposit layers of other materials. Layers of polycrystalline silicon (polysilicon or <SPAN CLASS="Definition">

poly</SPAN>

), SiO<SUB CLASS="Subscript">

2</SUB>

, and silicon nitride (Si<SUB CLASS="Subscript">

3</SUB>

N<SUB CLASS="Subscript">

4</SUB>

), for example, may be deposited using <SPAN CLASS="Definition">

chemical vapor deposition</SPAN>

 (<SPAN CLASS="Definition">

CVD</SPAN>

). Metal layers can be deposited using <SPAN CLASS="Definition">

sputtering</SPAN>

. All these layers are patterned using masks and similar <SPAN CLASS="Definition">

photolithography</SPAN>

 steps to those shown in Figure&nbsp;2.6.</P>

<TABLE>

<TR>

<TH ROWSPAN="1" COLSPAN="4">

<P CLASS="TableTitle">

<A NAME="pgfId=195486">

 </A>

TABLE&nbsp;2.2&nbsp;CMOS process layers.</P>

</TH>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=195494">

 </A>

	Mask/layer name </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=195496">

 </A>

Derivation from drawn layers</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=195498">

 </A>

	Alternative names for mask/layer</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=195500">

 </A>

MOSIS mask label</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195503">

 </A>

	<SPAN CLASS="EmphasisPrefix">

n</SPAN>

-well</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195509">

 </A>

 	= nwell<A HREF="#pgfId=195508" CLASS="footnote">

1</A>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195513">

 </A>

	bulk, substrate, tub, <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-tub, moat</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195516">

 </A>

 CWN</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195519">

 </A>

	<SPAN CLASS="EmphasisPrefix">

p</SPAN>

-well</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195524">

 </A>

	= pwell<SUP CLASS="Superscript">

1</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195527">

 </A>

	bulk, substrate, tub, <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-tub, moat</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195530">

 </A>

 CWP</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195533">

 </A>

	active</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195535">

 </A>

	= pdiff + ndiff</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195539">

 </A>

	thin oxide, thinox, island, gate oxide</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195542">

 </A>

 CAA</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195545">

 </A>

	polysilicon</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195547">

 </A>

	= poly</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195551">

 </A>

	poly, gate</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195554">

 </A>

 CPG</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195561">

 </A>

	<SPAN CLASS="EmphasisPrefix">

n</SPAN>

-diffusion implant<A HREF="#pgfId=195560" CLASS="footnote">

2</A>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195563">

 </A>

	= grow (ndiff)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195569">

 </A>

	ndiff, <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-select, nplus, n+ </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195572">

 </A>

 CSN</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195578">

 </A>

	<SPAN CLASS="EmphasisPrefix">

p</SPAN>

-diffusion implant<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195580">

 </A>

	= grow (pdiff)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195586">

 </A>

	pdiff, <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-select, pplus, p+ </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195589">

 </A>

 CSP</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195592">

 </A>

	contact</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195594">

 </A>

	= contact</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195599">

 </A>

	contact cut, poly contact, diffusion contact</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195606">

 </A>

 CCP and CCA<A HREF="#pgfId=195605" CLASS="footnote">

3</A>

</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195609">

 </A>

	metal1 </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195611">

 </A>

	= m1</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195615">

 </A>

	first-level metal </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195618">

 </A>

 CMF</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195621">

 </A>

	metal2 </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195623">

 </A>

	= m2</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195627">

 </A>

	second-level metal </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195630">

 </A>

CMS</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195633">

 </A>

	via2 </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195635">

 </A>

	= via2</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195639">

 </A>

	metal2/metal3 via, m2/m3 via</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195642">

 </A>

 CVS</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=201091">

 </A>

	metal3 </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195647">

 </A>

	= m3</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195651">

 </A>

	third-level metal </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195654">

 </A>

 CMT</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=195657">

 </A>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -