⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch02.1c.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
<HTML>

<HEAD>

  <META NAME="GENERATOR" CONTENT="Adobe PageMill 2.0 Mac">

  

  <TITLE> 2.10&nbsp;&nbsp;&nbsp;Problems</TITLE>

</HEAD><!--#include file="top.html"--><!--#include file="header.html"-->





<P><A NAME="pgfId=88389"></A><HR ALIGN=LEFT></P>



<P><A HREF="CH02.htm">Chapter&nbsp;&nbsp;start</A>&nbsp;&nbsp;&nbsp;<A 

HREF="CH02.1b.htm">Previous&nbsp;&nbsp;page</A>&nbsp;&nbsp;<A HREF="CH02.1d.htm">Next&nbsp;&nbsp;page</A></P>



<H2>2.10&nbsp;&nbsp;&nbsp;Problems</H2>



<P><P CLASS="BodyAfterHead"><A NAME="pgfId=8671"></A>*<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>Difficult,**<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>Very

difficult, ***<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>Extremely

difficult</P>



<P><P CLASS="ExerciseHead"><A NAME="pgfId=137163"></A>2.1&nbsp;(Switches,

20 min.) <B>(a)</B> &nbsp;Draw a circuit schematic for a two-way light switch:

flipping the switch at the top or bottom of the stairs reverses the state

of two light bulbs, one at the top and one at the bottom of the stairs.

Your schematic should show and label all the cables, switches, and bulbs.

<B>(b)</B> &nbsp;Repeat the problem for three switches and one light in

a warehouse.</P>



<P><P CLASS="ExerciseHead"><A NAME="pgfId=179261"></A>2.2&nbsp;(Logic, 10

min.) The queen wished to choose her successor wisely. She blindfolded and

then placed a crown on each of her three children, explaining that there

were three red and two blue crowns, and they must deduce the color of their

own crown. With blindfolds removed the children could see the two other

crowns, but not their own. After a while Anne said: &quot;My crown is red.&quot;

How did she know?</P>



<P><P CLASS="ExerciseHead"><A NAME="pgfId=105701"></A>2.3&nbsp;(Minus signs,

20 min.) The channel charge in an <SPAN CLASS="EmphasisPrefix"> n</SPAN>

-channel transistor is negative. <B>(a)</B> &nbsp;Should there not be a

minus sign in Eq.&nbsp;2.5 to account for this? <B>(b)</B> &nbsp;If so,

then where in the derivation of Section&nbsp;2.1 does the minus sign disappear

to arrive at Eq.&nbsp;2.9 for the current in an <SPAN CLASS="EmphasisPrefix">

n</SPAN> -channel transistor? <B>(c)</B> &nbsp;The equations for the current

in a <SPAN CLASS="EmphasisPrefix"> p</SPAN> -channel transistor (Eq.&nbsp;2.15)

have the opposite sign to those for an <SPAN CLASS="EmphasisPrefix"> n</SPAN>

-channel transistor. Where in the derivation in Section&nbsp;2.1 does the

extra minus sign arise?</P>



<P><TABLE BORDER="0" CELLSPACING="2" CELLPADDING="0">

<TR>

<TD><P CLASS="TableFigTitleSide"><A NAME="pgfId=215328"></A>FIGURE&nbsp;2.34&nbsp;&nbsp;Transistor

characteristics for a 0.3<SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="Symbol">

m</SPAN> m process (Problem 2.4).</TD>

<TD><P CLASS="TableFigure"><A NAME="pgfId=215336"></A><IMG SRC="CH02-115.gif"

ALIGN="BASELINE" WIDTH="190" HEIGHT="158" NATURALSIZEFLAG="3"> &nbsp;</TD></TR>

</TABLE>

<P CLASS="ExerciseHead"><A NAME="pgfId=162048"></A>2.4&nbsp;(Transistor

curves, 20 min.) Figure&nbsp;2.34 shows the measured <SPAN CLASS="EquationVariables">

I</SPAN> <SUB CLASS="Subscript"> DS</SUB> <SPAN CLASS="EquationVariables">

V</SPAN> <SUB CLASS="SubscriptVariable"> DS</SUB> characteristics for a

20/20 <SPAN CLASS="EmphasisPrefix"> n</SPAN> -channel transistor in a 0.3<SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="Symbol">

m</SPAN> m (effective gate length) process from an ASIC foundry. Derive

as much information as you can from this figure.</P>



<P><P CLASS="ExerciseHead"><A NAME="pgfId=8700"></A>2.5&nbsp;(Body effect,

20 min). The equations for the drainsource current (2.9, 2.12, and 2.15)

do not contain <SPAN CLASS="EquationVariables"> V</SPAN> <SUB CLASS="SubscriptVariable">

SB</SUB> <SPAN CLASS="White">&nbsp;</SPAN>, the source

voltage with respect to the bulk, because we assumed that it was zero. This

is not true for the <SPAN CLASS="EmphasisPrefix"> n</SPAN> -channel transistor

whose drain is connected to the output in a two-input NAND gate, for example.

A reverse <B>substrate bias</B> (or back-gate bias; <SPAN CLASS="EquationVariables">

V</SPAN> <SUB CLASS="SubscriptVariable"> SB</SUB> <SPAN CLASS="White">&nbsp;</SPAN>&gt;<SPAN CLASS="White">&nbsp;</SPAN>0

for an <SPAN CLASS="EmphasisPrefix"> n</SPAN> -channel transistor) makes

the bulk act like a second gate (the back gate) and modifies an <SPAN CLASS="EmphasisPrefix">

n</SPAN> -channel transistor threshold voltage as follows:</P>



<P><P CLASS="EquationNumbered"><A NAME="pgfId=181819"></A><IMG SRC="CH02-116.gif"

ALIGN="BASELINE" WIDTH="155" HEIGHT="20" NATURALSIZEFLAG="3"> ,(2.67)</P>



<P><P CLASS="ExerciseNoIndent"><A NAME="pgfId=181828"></A>where <SPAN CLASS="EquationVariables">

V</SPAN> <SUB CLASS="SubscriptVariable"> t</SUB> <SUB CLASS="Subscript">

0</SUB> <SUB CLASS="SubscriptVariable"> n</SUB> is measured with <SPAN CLASS="EquationVariables">

V</SPAN> <SUB CLASS="SubscriptVariable"> SB</SUB> <SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>0<SPAN CLASS="White">&nbsp;</SPAN>V;

<SPAN CLASS="Symbol"> f</SPAN> <SUB CLASS="Subscript"> 0</SUB> is called

the surface potential; and <SPAN CLASS="Symbol"> g</SPAN> (gamma) is the

<B>body-effect coefficient</B> (back-gate bias coefficient),</P>



<P><P CLASS="EquationNumbered"><A NAME="pgfId=181842"></A><IMG SRC="CH02-117.gif"

ALIGN="BASELINE" WIDTH="72" HEIGHT="36" NATURALSIZEFLAG="3"> (2.68)</P>



<P><P CLASS="Exercise"><A NAME="pgfId=190194"></A>There are several alternative

names and symbols for <SPAN CLASS="Symbol"> f</SPAN> <SUB CLASS="Subscript">

0</SUB> (&quot;phi,&quot; a positive quantity for an <SPAN CLASS="EmphasisPrefix">

n</SPAN> -channel transistor, typically between 0.60.7<SPAN CLASS="White">&nbsp;</SPAN>V)you

may also see <SPAN CLASS="Symbol"> f</SPAN> <SUB CLASS="SubscriptVariable">

b</SUB> (for bulk potential) or 2<SPAN CLASS="Symbol"> f</SPAN> <SUB CLASS="Subscript">

F</SUB> (twice the Fermi potential, a negative quantity). In Eq.&nbsp;2.68,

<SPAN CLASS="Symbol"> e</SPAN> <SUB CLASS="Subscript"> Si</SUB> <SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="Symbol">

e</SPAN> <SUB CLASS="Subscript"> 0</SUB> <SPAN CLASS="Symbol"> e</SPAN>

<SUB CLASS="Subscript"> r<SPAN CLASS="White">&nbsp;</SPAN></SUB>

=<SPAN CLASS="White">&nbsp;</SPAN>1.053<SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="Symbol">

&yen;</SPAN> <SPAN CLASS="White">&nbsp;</SPAN>10<SUP CLASS="Superscript">

10</SUP> <SPAN CLASS="White">&nbsp;</SPAN>Fm<SUP CLASS="Superscript">

1</SUP> is the <B>permittivity of silicon</B> (the permittivity of a vacuum

<SPAN CLASS="Symbol"> e</SPAN> <SUB CLASS="Subscript"> 0</SUB> <SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>8.85<SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="Symbol">

&yen;</SPAN> <SPAN CLASS="White">&nbsp;</SPAN>10<SUP CLASS="Superscript">

12</SUP> <SPAN CLASS="White">&nbsp;</SPAN>Fm<SUP CLASS="Superscript">

1</SUP> and the relative permittivity of silicon is <SPAN CLASS="Symbol">

e</SPAN> <SUB CLASS="Subscript"> r</SUB> <SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>11.7);

<SPAN CLASS="EquationNumber"> NA</SPAN> is the acceptor doping concentration

in the bulk (for <SPAN CLASS="EmphasisPrefix"> p</SPAN> -type substrate

or well<SPAN CLASS="EquationNumber"> ND</SPAN> for the donor concentration

in an <SPAN CLASS="EmphasisPrefix"> n</SPAN> -type substrate or well); and

<SPAN CLASS="EquationNumber"> C</SPAN> <SUB CLASS="Subscript"> ox</SUB>

is the gate capacitance per unit area given by</P>



<P><P CLASS="EquationNumbered"><A NAME="pgfId=202560"></A><IMG SRC="CH02-118.gif"

ALIGN="BASELINE" WIDTH="54" HEIGHT="34" NATURALSIZEFLAG="3"> (2.69)</P>



<UL>

  <LI><A NAME="pgfId=202561"></A>a.&nbsp;Calculate the theoretical value

  of <SPAN CLASS="Symbol"> g</SPAN> for <SPAN CLASS="EquationNumber"> NA</SPAN>

  <SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>10<SUP CLASS="Superscript">

  16</SUP> <SPAN CLASS="White">&nbsp;</SPAN>cm<SUP CLASS="Superscript">

  3</SUP> , <SPAN CLASS="EquationNumber"> Tox<SPAN CLASS="White">&nbsp;</SPAN></SPAN>

  =<SPAN CLASS="White">&nbsp;</SPAN>100<SPAN CLASS="White">&nbsp;</SPAN>&Aring;.

  <LI><A NAME="pgfId=215097"></A>b.&nbsp;Calculate and plot <SPAN CLASS="EquationVariables">

  V</SPAN> <SUB CLASS="Subscript"> t</SUB> <SUB CLASS="SubscriptVariable">

  n</SUB> for <SPAN CLASS="EquationVariables"> V</SPAN> <SUB CLASS="SubscriptVariable">

  SB</SUB> ranging from <SPAN CLASS="White">&nbsp;</SPAN>0<SPAN CLASS="White">&nbsp;</SPAN>V

  to 5<SPAN CLASS="White">&nbsp;</SPAN>V in increments of 1<SPAN CLASS="White">&nbsp;</SPAN>V

  assuming values of <SPAN CLASS="Symbol"> g</SPAN> <SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>0.5<SPAN CLASS="White">&nbsp;</SPAN>V<SUP CLASS="Superscript">

  0.5</SUP> , <SPAN CLASS="Symbol"> f</SPAN> <SUB CLASS="Subscript"> 0</SUB>

  <SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>0.6<SPAN CLASS="White">&nbsp;</SPAN>V,

  and <SPAN CLASS="EquationVariables"> V</SPAN> <SUB CLASS="Subscript"> t0</SUB>

  <SUB CLASS="SubscriptVariable"> n</SUB> <SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>0.5<SPAN CLASS="White">&nbsp;</SPAN>V

  obtained from transistor characteristics.

  <LI><A NAME="pgfId=215102"></A>c.&nbsp;Fit a linear approximation to <SPAN CLASS="EquationVariables">

  V</SPAN> <SUB CLASS="Subscript"> t</SUB> <SUB CLASS="SubscriptVariable">

  n</SUB> .

  <LI><A NAME="pgfId=215103"></A>d.&nbsp;Recognizing <SPAN CLASS="EquationVariables">

  V</SPAN> <SUB CLASS="SubscriptVariable"> SB</SUB> <SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="Symbol">

  &pound;</SPAN> <SPAN CLASS="White">&nbsp;</SPAN>0<SPAN CLASS="White">&nbsp;</SPAN>V,

  rewrite Eq.&nbsp;2.67 for a <SPAN CLASS="EmphasisPrefix"> p</SPAN> -channel

  device.

  <LI><A NAME="pgfId=215104"></A>e.&nbsp;(Harder)&nbsp;What effect does the

  back-gate bias effect have on CMOS logic circuits?

</UL>



<P><P CLASS="Exercise"><A NAME="pgfId=183181"></A>Answer: (a)&nbsp;0.17<SPAN CLASS="White">&nbsp;</SPAN>V<SUP CLASS="Superscript">

0.5</SUP> (b)&nbsp;0.501.3<SPAN CLASS="White">&nbsp;</SPAN>V.</P>



<P><P CLASS="ExerciseHead"><A NAME="pgfId=181811"></A>2.6&nbsp;(Sizing layout,

10<SPAN CLASS="White">&nbsp;</SPAN>min.) Stating

clearly whatever assumptions you make and describing the tools and methods

you use, estimate the size (in <SPAN CLASS="Symbol"> l</SPAN> ) of the standard

cell shown in Figure&nbsp;1.3. Estimate the size of each of the transistors,

giving their channel lengths and widths (stating clearly which is which).</P>



<P><P CLASS="ExerciseHead"><A NAME="pgfId=167279"></A>2.7&nbsp;(CMOS process)

(20<SPAN CLASS="White">&nbsp;</SPAN>min.) Table&nbsp;2.15

shows the major steps involved in a typical deep submicron CMOS process.

There are approximately 100 major steps in the process.</P>



<UL>

  <LI><A NAME="pgfId=215105"></A>a.&nbsp;If each major step has a yield of

  0.9, what is the overall process yield?

  <LI><A NAME="pgfId=215106"></A>b.&nbsp;If the process yield is 90<SPAN CLASS="White">&nbsp;</SPAN>%

  (not uncommon), what is the average yield at each major step?

  <LI><A NAME="pgfId=215107"></A>c.&nbsp;If each of the major steps in Table&nbsp;2.15

  consists of an average of five other microtasks, what is the average yield

  of each of the 500 microtasks.

  <LI><A NAME="pgfId=215111"></A>d.&nbsp;Suppose, for example, an operator

  loads and unloads a furnace five times a day as a microtask, how many days

  must the operator work without making a mistake to achieve this microtask

  yield?

  <LI><A NAME="pgfId=215112"></A>e.&nbsp;Does this seem reasonable? What

  is wrong with our model?

  <LI><A NAME="pgfId=215113"></A>f.&nbsp;(**60<SPAN CLASS="White">&nbsp;</SPAN>min.)

  Draw the process cross-section showing, in particular, the poly, FOX, gate

  oxide, IMOs and metal layers. You may have to make some assumptions about

  the meanings and functions of the various steps and layers. Assume all

  layers are deposited on top of each other according to the thicknesses

  shown (do not attempt to correct for the silicon consumed during oxidationeven

  if you understand what this means). The abbreviations in Table&nbsp;2.15

  are as follows: dep.<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>deposition;

  LPCVD<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>low-pressure

  chemical vapor deposition (for growing oxide and poly); LDD<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>lightly

  doped drain (a way to improve transistor characteristics); SOG<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>silicon

  overglass (a deposited quartz to help with step coverage between metal

  layers). <TABLE BORDER="0" CELLSPACING="2" CELLPADDING="0">

<TR>

<TD COLSPAN="9">  <P CLASS="TableTitle"><A NAME="pgfId=169545"></A>TABLE&nbsp;2.15&nbsp;&nbsp;&nbsp;&nbsp;CMOS

  process steps (Problem 2.7).<A HREF="#pgfId=202524" CLASS="footnote"> 1</A></TD></TR>

<TR>

<TD>  <P CLASS="TableFirst"><A NAME="pgfId=169563"></A>&nbsp;</TD>

<TD>  <P CLASS="TableFirst"><A NAME="pgfId=169565"></A><B>Step</B></TD>

<TD>  <P CLASS="TableFirst"><A NAME="pgfId=169567"></A><B>Depth</B></TD>

<TD>  <P CLASS="TableFirst"><A NAME="pgfId=169569"></A>&nbsp;</TD>

<TD>  <P CLASS="TableFirst"><A NAME="pgfId=169571"></A><B>Step</B></TD>

<TD>  <P CLASS="TableFirst"><A NAME="pgfId=169573"></A><B>Depth</B></TD>

<TD>  <P CLASS="TableFirst"><A NAME="pgfId=169575"></A>&nbsp;</TD>

<TD>  <P CLASS="TableFirst"><A NAME="pgfId=169577"></A><B>Step</B></TD>

<TD>  <P CLASS="TableFirst"><A NAME="pgfId=169579"></A><B>Depth</B></TD></TR>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -