⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch02.17.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 2 页
字号:
"CH02-103.gif" ALIGN="BASELINE" WIDTH="10" HEIGHT="16" NATURALSIZEFLAG=

"3"> or B[i<SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="White">&nbsp;</SPAN>1]=<IMG SRC=

"CH02-104.gif" ALIGN="BASELINE" WIDTH="10" HEIGHT="16" NATURALSIZEFLAG=

"3"> </CODE></TD>

<TD><P CLASS="Table"><A NAME="pgfId=199060"></A><CODE>1</CODE></TD>

<TD><P CLASS="Table"><A NAME="pgfId=199062"></A><CODE>0</CODE></TD></TR>

<TR>

<TD><P CLASS="Table"><A NAME="pgfId=199064"></A>1</TD>

<TD><P CLASS="Table"><A NAME="pgfId=199066"></A>1</TD>

<TD><P CLASS="Table"><A NAME="pgfId=199068"></A>x</TD>

<TD><P CLASS="Table"><A NAME="pgfId=199070"></A>x</TD>

<TD><P CLASS="Table"><A NAME="pgfId=199072"></A>0</TD>

<TD><P CLASS="Table"><A NAME="pgfId=199074"></A>1</TD></TR>

</TABLE>

<P CLASS="Body"><A NAME="pgfId=197466"></A>The redundant binary representation

is not unique. We can represent 101 (decimal), for example, by <IMG SRC=

"CH02-105.gif" ALIGN="BASELINE" WIDTH="39" HEIGHT="14" NATURALSIZEFLAG=

"3"> (binary and CSD vector) or <IMG SRC="CH02-106.gif" ALIGN="BASELINE"

WIDTH="49" HEIGHT="18" NATURALSIZEFLAG="3"> . As another example, 188 (decimal)

can be represented by <IMG SRC="CH02-107.gif" ALIGN="BASELINE" WIDTH="44"

HEIGHT="14" NATURALSIZEFLAG="3"> (binary), <IMG SRC="CH02-108.gif" ALIGN=

"BASELINE" WIDTH="54" HEIGHT="18" NATURALSIZEFLAG="3"> , <IMG SRC="CH02-109.gif"

ALIGN="BASELINE" WIDTH="54" HEIGHT="18" NATURALSIZEFLAG="3"> , or <IMG SRC=

"CH02-110.gif" ALIGN="BASELINE" WIDTH="54" HEIGHT="18" NATURALSIZEFLAG=

"3"> (CSD vector). Redundant binary addition of binary, redundant binary,

or CSD vectors does not result in a unique sum, and addition of two CSD

vectors does not result in a CSD vector. Each <SPAN CLASS="EquationVariables">

n</SPAN> -bit redundant binary number requires a rather wasteful 2<SPAN CLASS="EquationVariables">

n</SPAN> -bit binary number for storage. Thus <IMG SRC="CH02-111.gif" ALIGN=

"BASELINE" WIDTH="21" HEIGHT="18" NATURALSIZEFLAG="3"> is represented as

010010, for example (using sign magnitude). The other disadvantage of redundant

binary arithmetic is the need to convert to and from binary representation.</P>



<P><P CLASS="Body"><A NAME="pgfId=198881"></A>Table&nbsp;2.14 shows the

(5, 3) <B>residue number system</B> . As an example, 11 (decimal) is represented

as [1,&nbsp;2] residue (5,&nbsp;3) since 11R<SUB CLASS="Subscript"> 5</SUB>

<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>11

mod 5<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>1

and 11R<SUB CLASS="Subscript"> 3</SUB> <SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>11

mod 3<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>2.

The size of this system is thus 3<SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="Symbol">

&yen;</SPAN> <SPAN CLASS="White">&nbsp;</SPAN>5<SPAN CLASS="White">&nbsp;</SPAN>=<SPAN CLASS="White">&nbsp;</SPAN>15.

We add, subtract, or multiply residue numbers using the modulus of each

bit positionwithout any carry. Thus:</P>



<P><SPAN CLASS="ComputerFirst"> <A NAME="pgfId=197386"></A>&nbsp;&nbsp;

&nbsp;&nbsp;4&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[4, 1]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

&nbsp;12&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[2, 0]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

&nbsp;&nbsp;3&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[3, 0]</SPAN>

<SPAN CLASS="Computer"> <A NAME="pgfId=197387"></A>&nbsp;&nbsp;+ &nbsp;7&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;+&nbsp;[2,

1]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

&nbsp;4&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[4, 1]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN CLASS="Symbol">

&yen;</SPAN> &nbsp;4&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<SPAN CLASS="Symbol">

&yen;</SPAN> &nbsp;[4, 1]</SPAN> <SPAN CLASS="Computer"> <A NAME="pgfId=197388"></A>&nbsp;&nbsp;=&nbsp;11&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;[1,

2]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;&nbsp;8&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;[3,

2]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;12&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=&nbsp;[2,

0]</SPAN> <TABLE BORDER="0" CELLSPACING="2" CELLPADDING="0">

<TR>

<TD COLSPAN="9"><P CLASS="TableTitle"><A NAME="pgfId=196788"></A>TABLE&nbsp;2.14&nbsp;&nbsp;&nbsp;&nbsp;The

5, 3 residue number system.</TD></TR>

<TR>

<TD><P CLASS="Table"><A NAME="pgfId=196813"></A>n</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196848"></A>residue 5</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196850"></A>residue 3</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197102"></A>n</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197104"></A>residue 5</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197106"></A>residue 3</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197204"></A>n</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197206"></A>residue 5</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197208"></A>residue 3</TD></TR>

<TR>

<TD><P CLASS="Table"><A NAME="pgfId=196936"></A>0</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196938"></A>0</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196940"></A>0</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197300"></A>5</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197302"></A>0</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197304"></A>2</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197330"></A>10</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197332"></A>0</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197334"></A>1</TD></TR>

<TR>

<TD><P CLASS="Table"><A NAME="pgfId=196930"></A>1</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196932"></A>1</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196934"></A>1</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197306"></A>6</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197308"></A>1</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197310"></A>0</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197336"></A>11</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197338"></A>1</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197340"></A>2</TD></TR>

<TR>

<TD><P CLASS="Table"><A NAME="pgfId=196924"></A>2</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196926"></A>2</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196928"></A>2</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197312"></A>7</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197314"></A>2</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197316"></A>1</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197342"></A>12</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197344"></A>2</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197346"></A>0</TD></TR>

<TR>

<TD><P CLASS="Table"><A NAME="pgfId=196918"></A>3</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196920"></A>3</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196922"></A>0</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197318"></A>8</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197320"></A>3</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197322"></A>2</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197348"></A>13</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197350"></A>3</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197352"></A>1</TD></TR>

<TR>

<TD><P CLASS="Table"><A NAME="pgfId=196912"></A>4</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196914"></A>4</TD>

<TD><P CLASS="Table"><A NAME="pgfId=196916"></A>1</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197324"></A>9</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197326"></A>4</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197328"></A>0</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197354"></A>14</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197356"></A>4</TD>

<TD><P CLASS="Table"><A NAME="pgfId=197358"></A>2</TD></TR>

</TABLE>

<P CLASS="BodyAfterHead"><A NAME="pgfId=197407"></A>The choice of moduli

determines the system size and the computing complexity. The most useful

choices are relative primes (such as 3 and 5). With <SPAN CLASS="EquationVariables">

p</SPAN> prime, numbers of the form 2<SPAN CLASS="EquationVariables"> p</SPAN>

and 2<SUP CLASS="Superscript"> p</SUP> <SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="White">&nbsp;</SPAN>1

are particularly useful (2<SUP CLASS="Superscript"> p</SUP> <SPAN CLASS="White">&nbsp;</SPAN><SPAN CLASS="White">&nbsp;</SPAN>1

are <B>Mersenne's numbers</B> ) [Waser and Flynn, 1982].</P>



<P><HR ALIGN=LEFT></P>



<P><A HREF="CH02.12.htm">Chapter&nbsp;&nbsp;start</A>&nbsp;&nbsp;&nbsp;<A

HREF="CH02.16.htm">Previous&nbsp;&nbsp;page</A>&nbsp;&nbsp;<A HREF="CH02.18.htm">Next&nbsp;&nbsp;page</A>

</BODY>



<!--#include file="Copyright.html"--><!--#include file="footer.html"-->

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -