⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch02.1.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377977">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377979">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377981">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377983">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377985">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377987">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377989">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377991">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377993">

 </A>

2 (6/60) (850 <SPAN CLASS="Symbol">

&#165;</SPAN>

 10<SUP CLASS="Superscript">

&#8211;6</SUP>

)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377995">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377997">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377999">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378001">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378003">

 </A>

&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=378005">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=378007">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=378009">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378011">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378013">

 </A>

(&#8211;3.0 &#8211; (&#8211;0.85) )<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=378015">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=378017">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=378019">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378021">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378023">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=378025">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=378027">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=378029">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378031">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=378033">

 </A>

3.68 <SPAN CLASS="Symbol">

&#165;</SPAN>

 10<SUP CLASS="Superscript">

&#8211;5</SUP>

 AV<SUP CLASS="Superscript">

&#8211;2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=378035">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=378037">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=107030">

 </A>

The next section explains the signs in Eq.&nbsp;2.14. </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=204616">

 </A>

<SPAN CLASS="Bold">

(a)</SPAN>

</P>

<DIV>

<IMG SRC="CH02-4.gif">

</DIV>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=206007">

 </A>

<SPAN CLASS="Bold">

(b)</SPAN>

</P>

<DIV>

<IMG SRC="CH02-5.gif">

</DIV>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigureTitle">

<A NAME="pgfId=206594">

 </A>

FIGURE&nbsp;2.4&nbsp;MOS <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor characteristics for a generic 0.5 <SPAN CLASS="Symbol">

m</SPAN>

m process (G5). (a)&nbsp;A short-channel transistor, with W = 6 <SPAN CLASS="Symbol">

m</SPAN>

m and L = 0.6 <SPAN CLASS="Symbol">

m</SPAN>

m (drawn) and a long-channel transistor (W = 60 <SPAN CLASS="Symbol">

m</SPAN>

m, L = 6 <SPAN CLASS="Symbol">

m</SPAN>

m) (b)&nbsp;The 6/0.6 characteristics represented as a surface. (c)&nbsp;A long-channel transistor obeys a square-law characteristic between <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="Subscript">

DS</SUB>

 and <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="Subscript">

GS</SUB>

 in the saturation region (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="Subscript">

DS</SUB>

 = 3 V). A short-channel transistor shows a more linear characteristic due to velocity saturation. Normally, all of the transistors used on an ASIC have short channels.</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=206011">

 </A>

<SPAN CLASS="Bold">

(c)</SPAN>

</P>

<DIV>

<IMG SRC="CH02-6.gif">

</DIV>

</TD>

</TR>

</TABLE>

<DIV>

<H3 CLASS="Heading2">

<A NAME="pgfId=204421">

 </A>

2.1.1&nbsp;P-Channel Transistors</H3>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=205325">

 </A>

The source and drain of CMOS transistors look identical; we have to know which way the current is flowing to distinguish them. The source of an <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor is lower in potential than the drain and vice versa for a <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor. In an <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor the threshold voltage, <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

, is normally positive, and the terminal voltages <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 and <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS </SUB>

are also usually positive. In a <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

p</SUB>

 is normally negative and we have a choice: We can write everything in terms of the magnitudes of the voltages and currents or we can use negative signs in a consistent fashion. </P>

<P CLASS="Body">

<A NAME="pgfId=205327">

 </A>

Here are the equations for a <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor using negative signs:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=378447">

 </A>

<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSp</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378437">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=378409">

 </A>

&#8211;k<SUP CLASS="Superscript">

'</SUP>

<SUB CLASS="SubscriptVariable">

p</SUB>

<SPAN CLASS="EquationNumber">

(W/L)</SPAN>

[ (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

p</SUB>

) &#8211; 0.5 <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 ]<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

&nbsp;;&nbsp;&nbsp;&nbsp;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS </SUB>

&gt; <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

p</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=378411">

 </A>

(2.15)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=378449">

 </A>

<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSp</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378439">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=378428">

 </A>

&#8211;<SPAN CLASS="Symbol">

b</SPAN>

<SUB CLASS="SubscriptVariable">

p</SUB>

/2 (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

p</SUB>

)<SUP CLASS="Superscript">

2</SUP>

&nbsp;;&nbsp;&nbsp;&nbsp;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 &lt; <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

p</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=378430">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=204432">

 </A>

In these two equations <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

p</SUB>

 is negative, and the terminal voltages <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS </SUB>

and <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS </SUB>

are also normally negative (and &#8211;3 V &lt; &#8211;2 V, for example). The current <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSp</SUB>

 is then negative, corresponding to conventional current flowing from source to drain of a <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor (and hence the negative sign for <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSp</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

 in Eq.&nbsp;2.14). </P>

</DIV>

<DIV>

<H3 CLASS="Heading2">

<A NAME="pgfId=204405">

 </A>

2.1.2&nbsp;Velocity Saturation</H3>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=214728">

 </A>

For a deep submicron transistor, Eq.&nbsp;2.12 may overestimate the drain&#8211;source current by a factor of 2 or more. There are three reasons for this error. First, the threshold voltage is not constant. Second, the actual length of the channel (the electrical or effective length, often written as <SPAN CLASS="EquationNumber">

L</SPAN>

<SUB CLASS="Subscript">

eff</SUB>

) is less than the drawn (mask) length. The third reason is that Eq.&nbsp;2.3 is not valid for high electric fields. The electrons cannot move any faster than about <SPAN CLASS="EquationNumber">

v</SPAN>

<SUB CLASS="Subscript">

max</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 = 10<SUP CLASS="Superscript">

5</SUP>

 ms<SUP CLASS="Superscript">

&#8211;1</SUP>

 when the electric field is above 10<SUP CLASS="Superscript">

6</SUP>

 Vm<SUP CLASS="Superscript">

&#8211;1</SUP>

 (reached when 1 V is dropped across 1 <SPAN CLASS="Symbol">

m</SPAN>

m); the electrons become <SPAN CLASS="Definition">

velocity saturated</SPAN>

. In this case <SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

f</SUB>

  = <SPAN CLASS="EquationNumber">

L</SPAN>

<SUB CLASS="Subscript">

eff</SUB>

/<SPAN CLASS="EquationNumber">

v</SPAN>

<SUB CLASS="Subscript">

max</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

, the drain&#8211;source saturation current is independent of the transistor length, and Eq.&nbsp;2.12 becomes  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=378525">

 </A>

<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSn</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=378527">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=378529">

 </A>

Wv<SUB CLASS="Subscript">

max</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

C<SUB CLASS="Subscript">

ox</SUB>

 (<SPAN CLASS="EquationVariables">

V</SPAN>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -