📄 ch02.1.htm
字号:
– V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
)<SUP CLASS="Superscript">
2</SUP>
; <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
> V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
.</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=377601">
</A>
(2.12)</P>
</TD>
</TR>
</TABLE>
<P CLASS="Body">
<A NAME="pgfId=106957">
</A>
Figure 2.4 shows the <SPAN CLASS="EmphasisPrefix">
n</SPAN>
-channel transistor <SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
<SPAN CLASS="EquationVariables">
–V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
characteristics for a generic 0.5 <SPAN CLASS="Symbol">
m</SPAN>
m CMOS process that we shall call <SPAN CLASS="Definition">
G5</SPAN>
. We can fit Eq. 2.12 to the long-channel transistor characteristics (W = 60 <SPAN CLASS="Symbol">
m</SPAN>
m, L = 6 <SPAN CLASS="Symbol">
m</SPAN>
m) in Figure 2.4(a). If <SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
DSn</SUB>
<SUB CLASS="Subscript">
(sat)</SUB>
= 2.5 mA (with <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
= 3.0 V, <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
= 3.0 V, <SPAN CLASS="EquationNumber">
V</SPAN>
<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
= 0.65 V, <SPAN CLASS="EquationNumber">
T</SPAN>
<SUB CLASS="Subscript">
ox</SUB>
=100 Å), the intrinsic transconductance is </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377839">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377841">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377843">
</A>
2(L/W)<SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
DSn</SUB>
<SUB CLASS="Subscript">
(sat)</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377811">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377638">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377923">
</A>
k<SUP CLASS="Superscript">
'</SUP>
<SUB CLASS="SubscriptVariable">
n</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377925">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377857">
</A>
–––––––––––––––––––</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377813">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=377646">
</A>
(2.13)</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377859">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377861">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377863">
</A>
(<SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
– V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
)<SUP CLASS="Superscript">
2</SUP>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377815">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377654">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377748">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377750">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377752">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377817">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377754">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377686">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377688">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377690">
</A>
2 (6/60) (2.5 <SPAN CLASS="Symbol">
¥</SPAN>
10<SUP CLASS="Superscript">
–3</SUP>
)</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377819">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377692">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377698">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377700">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377702">
</A>
––––––––––––––––––</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377821">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377704">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377710">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377712">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377714">
</A>
(3.0 – 0.65)<SUP CLASS="Superscript">
2</SUP>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377823">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377716">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377877">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377879">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377881">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377883">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377885">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377732">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377734">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377736">
</A>
9.05 <SPAN CLASS="Symbol">
¥</SPAN>
10<SUP CLASS="Superscript">
–5</SUP>
AV<SUP CLASS="Superscript">
–2</SUP>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377825">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377738">
</A>
</P>
</TD>
</TR>
</TABLE>
<P CLASS="BodyAfterHead">
<A NAME="pgfId=106958">
</A>
or approximately 90 <SPAN CLASS="Symbol">
m</SPAN>
AV<SUP CLASS="Superscript">
–2</SUP>
. This value of k<SUP CLASS="Superscript">
'</SUP>
<SUB CLASS="SubscriptVariable">
n</SUB>
, calculated in the saturation region, will be different (typically lower by a factor of 2 or more) from the value of k<SUP CLASS="Superscript">
'</SUP>
<SUB CLASS="SubscriptVariable">
n</SUB>
measured in the linear region. We assumed the mobility, <SPAN CLASS="Symbol">
m</SPAN>
<SUB CLASS="SubscriptVariable">
n</SUB>
, and the threshold voltage, V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
, are constants—neither of which is true, as we shall see in Section 2.1.2.</P>
<P CLASS="Body">
<A NAME="pgfId=204898">
</A>
For the <SPAN CLASS="EmphasisPrefix">
p</SPAN>
-channel transistor in the G5 process, <SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
DSp</SUB>
<SUB CLASS="Subscript">
(sat)</SUB>
= –850 <SPAN CLASS="Symbol">
m</SPAN>
A (<SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
= –3.0 V, <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
= –3.0 V, <SPAN CLASS="EquationNumber">
V</SPAN>
<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
p</SUB>
= –0.85 V, <SPAN CLASS="EquationNumber">
W</SPAN>
= 60 <SPAN CLASS="Symbol">
m</SPAN>
m, <SPAN CLASS="EquationNumber">
L</SPAN>
= 6 <SPAN CLASS="Symbol">
m</SPAN>
m). Then </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377949">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377951">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377953">
</A>
2 (L/W) (– <SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
DSp</SUB>
<SUB CLASS="Subscript">
(sat)</SUB>
)</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377955">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377957">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377959">
</A>
k<SUP CLASS="Superscript">
'</SUP>
<SUB CLASS="SubscriptVariable">
p</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377961">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377963">
</A>
–––––––––––––––––––</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377965">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=377967">
</A>
(2.14)</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377969">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377971">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377973">
</A>
(<SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
– V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
p</SUB>
)<SUP CLASS="Superscript">
2</SUP>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377975">
</A>
</P>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -