⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch02.1.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

)<SUP CLASS="Superscript">

2</SUP>

&nbsp;;&nbsp;&nbsp;&nbsp;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &gt; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=377601">

 </A>

(2.12)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=106957">

 </A>

Figure&nbsp;2.4 shows the <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

<SPAN CLASS="EquationVariables">

&#8211;V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 characteristics for a generic 0.5 <SPAN CLASS="Symbol">

m</SPAN>

m CMOS process that we shall call <SPAN CLASS="Definition">

G5</SPAN>

. We can fit Eq.&nbsp;2.12 to the long-channel transistor characteristics (W = 60 <SPAN CLASS="Symbol">

m</SPAN>

m, L = 6 <SPAN CLASS="Symbol">

m</SPAN>

m) in Figure&nbsp;2.4(a). If <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSn</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

 = 2.5 mA (with <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 = 3.0 V, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 = 3.0 V, <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 = 0.65 V, <SPAN CLASS="EquationNumber">

T</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

 =100 &Aring;), the intrinsic transconductance is  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377839">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377841">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377843">

 </A>

2(L/W)<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSn</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377811">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377638">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377923">

 </A>

k<SUP CLASS="Superscript">

'</SUP>

<SUB CLASS="SubscriptVariable">

n</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377925">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377857">

 </A>

&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377813">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=377646">

 </A>

(2.13)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377859">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377861">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377863">

 </A>

(<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

)<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377815">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377654">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377748">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377750">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377752">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377817">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377754">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377686">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377688">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377690">

 </A>

2 (6/60) (2.5 <SPAN CLASS="Symbol">

&#165;</SPAN>

 10<SUP CLASS="Superscript">

&#8211;3</SUP>

)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377819">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377692">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377698">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377700">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377702">

 </A>

&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377821">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377704">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377710">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377712">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377714">

 </A>

(3.0 &#8211; 0.65)<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377823">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377716">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377877">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377879">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377881">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377883">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377885">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377732">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377734">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377736">

 </A>

9.05 <SPAN CLASS="Symbol">

&#165;</SPAN>

 10<SUP CLASS="Superscript">

&#8211;5</SUP>

 AV<SUP CLASS="Superscript">

&#8211;2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377825">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377738">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=106958">

 </A>

or approximately 90 <SPAN CLASS="Symbol">

m</SPAN>

AV<SUP CLASS="Superscript">

&#8211;2</SUP>

. This value of k<SUP CLASS="Superscript">

'</SUP>

<SUB CLASS="SubscriptVariable">

n</SUB>

, calculated in the saturation region, will be different (typically lower by a factor of 2 or more) from the value of k<SUP CLASS="Superscript">

'</SUP>

<SUB CLASS="SubscriptVariable">

n</SUB>

 measured in the linear region. We assumed the mobility, <SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

 , and the threshold voltage, V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

, are constants&#8212;neither of which is true, as we shall see in Section&nbsp;2.1.2.</P>

<P CLASS="Body">

<A NAME="pgfId=204898">

 </A>

For the <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor in the G5 process, <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSp</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

 = &#8211;850 <SPAN CLASS="Symbol">

m</SPAN>

A (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 = &#8211;3.0 V, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 = &#8211;3.0 V, <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

p</SUB>

 = &#8211;0.85 V, <SPAN CLASS="EquationNumber">

W</SPAN>

 = 60 <SPAN CLASS="Symbol">

m</SPAN>

m, <SPAN CLASS="EquationNumber">

L</SPAN>

 = 6 <SPAN CLASS="Symbol">

m</SPAN>

m). Then  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377949">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377951">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377953">

 </A>

2 (L/W) (&#8211; <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSp</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377955">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377957">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377959">

 </A>

k<SUP CLASS="Superscript">

'</SUP>

<SUB CLASS="SubscriptVariable">

p</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377961">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377963">

 </A>

&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377965">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=377967">

 </A>

(2.14)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377969">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377971">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377973">

 </A>

(<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

p</SUB>

)<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377975">

 </A>

&nbsp;</P>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -