📄 ch02.1.htm
字号:
<P CLASS="TableEqnNumber">
<A NAME="pgfId=376084">
</A>
(2.6)</P>
</TD>
</TR>
</TABLE>
<P CLASS="Body">
<A NAME="pgfId=181790">
</A>
The gate capacitance, <SPAN CLASS="EquationNumber">
C</SPAN>
, is given by the formula for a parallel-plate capacitor with length <SPAN CLASS="EquationNumber">
L</SPAN>
, width <SPAN CLASS="EquationNumber">
W</SPAN>
, and plate separation equal to the gate-oxide thickness, <SPAN CLASS="EquationNumber">
T</SPAN>
<SUB CLASS="Subscript">
ox</SUB>
. Thus the gate capacitance is </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=376110">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376112">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376114">
</A>
<SPAN CLASS="EquationNumber">
WL</SPAN>
<SPAN CLASS="Symbol">
e</SPAN>
<SUB CLASS="Subscript">
ox</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376116">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376118">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=376120">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=376122">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=376124">
</A>
<SPAN CLASS="EquationNumber">
C</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376126">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376128">
</A>
<SPAN CLASS="EquationVariables">
––––––</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376130">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376132">
</A>
<SPAN CLASS="EquationNumber">
WLC</SPAN>
<SUB CLASS="Subscript">
ox</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=376134">
</A>
,</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=376136">
</A>
(2.7)</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=376138">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376140">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376142">
</A>
<SPAN CLASS="EquationNumber">
T</SPAN>
<SUB CLASS="Subscript">
ox</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376144">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376146">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=376148">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=376150">
</A>
</P>
</TD>
</TR>
</TABLE>
<P CLASS="BodyAfterHead">
<A NAME="pgfId=302314">
</A>
where e<SUB CLASS="Subscript">
ox</SUB>
is the gate-oxide dielectric permittivity. For silicon dioxide, Si0<SUB CLASS="Subscript">
2</SUB>
, e<SUB CLASS="Subscript">
ox</SUB>
<SPAN CLASS="Symbol">
ª</SPAN>
3.45 <SPAN CLASS="Symbol">
¥</SPAN>
10<SUP CLASS="Superscript">
–11</SUP>
Fm<SUP CLASS="Superscript">
–1</SUP>
, so that, for a typical gate-oxide thickness of 100 Å (1 Å = 1 angstrom = 0.1 nm), the gate capacitance per unit area, C<SUB CLASS="Subscript">
ox</SUB>
<SPAN CLASS="Symbol">
ª</SPAN>
3 f F<SPAN CLASS="Symbol">
m</SPAN>
m<SUP CLASS="Superscript">
–2</SUP>
.</P>
<P CLASS="Body">
<A NAME="pgfId=200983">
</A>
Now we can express the channel charge in terms of the transistor parameters, </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=376652">
</A>
<SPAN CLASS="EquationVariables">
Q</SPAN>
= WL<SPAN CLASS="EquationNumber">
C</SPAN>
<SUB CLASS="Subscript">
ox</SUB>
<SPAN CLASS="EquationVariables">
</SPAN>
[ (<SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
– V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
) – 0.5 <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
] .</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=376654">
</A>
(2.8)</P>
</TD>
</TR>
</TABLE>
<P CLASS="Body">
<A NAME="pgfId=10391">
</A>
Finally, the drain–source current is </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377447">
</A>
<SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
DSn</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377449">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377451">
</A>
<SPAN CLASS="EquationNumber">
Q/</SPAN>
<SPAN CLASS="EquationVariables">
t</SPAN>
<SUB CLASS="SubscriptVariable">
f</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377453">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377455">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377457">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377459">
</A>
(W/L)<SPAN CLASS="Symbol">
m</SPAN>
<SUB CLASS="SubscriptVariable">
n</SUB>
<SPAN CLASS="EquationNumber">
C</SPAN>
<SUB CLASS="Subscript">
ox</SUB>
[ (<SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
– V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
) – 0.5 <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
]<SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=377461">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=377463">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377465">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=377467">
</A>
(W/L)k<SUP CLASS="Superscript">
'</SUP>
<SUB CLASS="SubscriptVariable">
n</SUB>
[ (<SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
– V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
) – 0.5 <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
]<SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
.</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=377469">
</A>
(2.9)</P>
</TD>
</TR>
</TABLE>
<P CLASS="Body">
<A NAME="pgfId=377254">
</A>
The constant k<SUP CLASS="Superscript">
'</SUP>
<SUB CLASS="SubscriptVariable">
n</SUB>
is the process transconductance parameter (or <SPAN CLASS="Definition">
intrinsic transconductance</SPAN>
): </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377489">
</A>
k<SUP CLASS="Superscript">
'</SUP>
<SUB CLASS="SubscriptVariable">
n</SUB>
= <SPAN CLASS="Symbol">
m</SPAN>
<SUB CLASS="SubscriptVariable">
n</SUB>
<SPAN CLASS="EquationNumber">
C</SPAN>
<SUB CLASS="Subscript">
ox</SUB>
.</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=377491">
</A>
(2.10)</P>
</TD>
</TR>
</TABLE>
<P CLASS="BodyAfterHead">
<A NAME="pgfId=92757">
</A>
We also define <SPAN CLASS="Symbol">
b</SPAN>
<SUB CLASS="SubscriptVariable">
n</SUB>
, the <SPAN CLASS="Definition">
transistor gain factor</SPAN>
(or just <SPAN CLASS="Definition">
gain factor</SPAN>
) as </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377526">
</A>
<SPAN CLASS="Symbol">
b</SPAN>
<SUB CLASS="SubscriptVariable">
n</SUB>
= k<SUP CLASS="Superscript">
'</SUP>
<SUB CLASS="SubscriptVariable">
n</SUB>
<SPAN CLASS="EquationNumber">
(W/L)</SPAN>
.</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=377528">
</A>
(2.11)</P>
</TD>
</TR>
</TABLE>
<P CLASS="BodyAfterHead">
<A NAME="pgfId=10486">
</A>
The factor W/L (transistor width divided by length) is the transistor <SPAN CLASS="Definition">
shape factor</SPAN>
.</P>
<P CLASS="Body">
<A NAME="pgfId=205047">
</A>
Equation 2.9 describes the <SPAN CLASS="Definition">
linear region</SPAN>
(or triode region) of operation. This equation is valid until <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
= <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
– <SPAN CLASS="EquationNumber">
V</SPAN>
<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
and then predicts that <SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
decreases with increasing <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
<SPAN CLASS="EquationVariables">
,</SPAN>
which does not make physical sense. At <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
= <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
– <SPAN CLASS="EquationNumber">
V</SPAN>
<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
= <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
<SUB CLASS="Subscript">
(sat)</SUB>
(the <SPAN CLASS="Definition">
saturation voltage</SPAN>
) there is no longer enough voltage between the gate and the drain end of the channel to support any channel charge. Clearly a small amount of charge remains or the current would go to zero, but with very little free charge the channel resistance in a small region close to the drain increases rapidly and any further increase in <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
is dropped over this region. Thus for <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DS</SUB>
> <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
– <SPAN CLASS="EquationNumber">
V</SPAN>
<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
(the <SPAN CLASS="Definition">
saturation region</SPAN>
, or pentode region, of operation) the drain current <SPAN CLASS="EquationVariables">
IDS </SPAN>
remains approximately constant at the <SPAN CLASS="Definition">
saturation current</SPAN>
, <SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
DSn</SUB>
<SUB CLASS="Subscript">
(sat)</SUB>
, where </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=377599">
</A>
<SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
DSn</SUB>
<SUB CLASS="Subscript">
(sat)</SUB>
= (<SPAN CLASS="Symbol">
b</SPAN>
<SUB CLASS="SubscriptVariable">
n</SUB>
/2)(<SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
GS</SUB>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -