⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch02.1.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
<P CLASS="TableEqnNumber">

<A NAME="pgfId=376084">

 </A>

(2.6)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=181790">

 </A>

The gate capacitance, <SPAN CLASS="EquationNumber">

C</SPAN>

, is given by the formula for a parallel-plate capacitor with length <SPAN CLASS="EquationNumber">

L</SPAN>

, width <SPAN CLASS="EquationNumber">

W</SPAN>

, and plate separation equal to the gate-oxide thickness, <SPAN CLASS="EquationNumber">

T</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

. Thus the gate capacitance is  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=376110">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376112">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376114">

 </A>

<SPAN CLASS="EquationNumber">

WL</SPAN>

<SPAN CLASS="Symbol">

e</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376116">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376118">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=376120">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=376122">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=376124">

 </A>

<SPAN CLASS="EquationNumber">

C</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376126">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376128">

 </A>

<SPAN CLASS="EquationVariables">

&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376130">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376132">

 </A>

<SPAN CLASS="EquationNumber">

WLC</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=376134">

 </A>

,</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=376136">

 </A>

(2.7)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=376138">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376140">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376142">

 </A>

<SPAN CLASS="EquationNumber">

T</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376144">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376146">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=376148">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=376150">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=302314">

 </A>

where e<SUB CLASS="Subscript">

ox</SUB>

 is the gate-oxide dielectric permittivity. For silicon dioxide, Si0<SUB CLASS="Subscript">

2</SUB>

, e<SUB CLASS="Subscript">

ox</SUB>

 <SPAN CLASS="Symbol">

&#170;</SPAN>

 3.45 <SPAN CLASS="Symbol">

&#165;</SPAN>

 10<SUP CLASS="Superscript">

&#8211;11</SUP>

 Fm<SUP CLASS="Superscript">

&#8211;1</SUP>

, so that, for a typical gate-oxide thickness of 100 &Aring; (1 &Aring; = 1 angstrom = 0.1 nm), the gate capacitance per unit area, C<SUB CLASS="Subscript">

ox</SUB>

 <SPAN CLASS="Symbol">

&#170;</SPAN>

 3 f F<SPAN CLASS="Symbol">

m</SPAN>

m<SUP CLASS="Superscript">

&#8211;2</SUP>

.</P>

<P CLASS="Body">

<A NAME="pgfId=200983">

 </A>

Now we can express the channel charge in terms of the transistor parameters,  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376652">

 </A>

<SPAN CLASS="EquationVariables">

Q</SPAN>

 = WL<SPAN CLASS="EquationNumber">

C</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

<SPAN CLASS="EquationVariables">

 </SPAN>

[ (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

) &#8211; 0.5 <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 ] .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=376654">

 </A>

(2.8)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=10391">

 </A>

Finally, the drain&#8211;source current is  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377447">

 </A>

<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSn</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377449">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377451">

 </A>

<SPAN CLASS="EquationNumber">

Q/</SPAN>

<SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

f</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377453">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377455">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377457">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377459">

 </A>

(W/L)<SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

<SPAN CLASS="EquationNumber">

C</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

[ (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

) &#8211; 0.5 <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 ]<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=377461">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=377463">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377465">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=377467">

 </A>

(W/L)k<SUP CLASS="Superscript">

'</SUP>

<SUB CLASS="SubscriptVariable">

n</SUB>

 [ (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

) &#8211; 0.5 <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 ]<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=377469">

 </A>

(2.9)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=377254">

 </A>

The constant k<SUP CLASS="Superscript">

'</SUP>

<SUB CLASS="SubscriptVariable">

n</SUB>

 is the process transconductance parameter (or <SPAN CLASS="Definition">

intrinsic transconductance</SPAN>

):  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377489">

 </A>

k<SUP CLASS="Superscript">

'</SUP>

<SUB CLASS="SubscriptVariable">

n</SUB>

 = <SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

<SPAN CLASS="EquationNumber">

C</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=377491">

 </A>

(2.10)</P>

</TD>

</TR>

</TABLE>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=92757">

 </A>

We also define <SPAN CLASS="Symbol">

b</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

, the <SPAN CLASS="Definition">

transistor gain factor</SPAN>

 (or just <SPAN CLASS="Definition">

gain factor</SPAN>

) as  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377526">

 </A>

<SPAN CLASS="Symbol">

b</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

 = k<SUP CLASS="Superscript">

'</SUP>

<SUB CLASS="SubscriptVariable">

n</SUB>

<SPAN CLASS="EquationNumber">

(W/L)</SPAN>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=377528">

 </A>

(2.11)</P>

</TD>

</TR>

</TABLE>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=10486">

 </A>

The factor W/L (transistor width divided by length) is the transistor <SPAN CLASS="Definition">

shape factor</SPAN>

.</P>

<P CLASS="Body">

<A NAME="pgfId=205047">

 </A>

Equation 2.9 describes the <SPAN CLASS="Definition">

linear region</SPAN>

 (or triode region) of operation. This equation is valid until <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 = <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 and then predicts that <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 decreases with increasing <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

<SPAN CLASS="EquationVariables">

,</SPAN>

 which does not make physical sense. At <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 = <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 = <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

 (the <SPAN CLASS="Definition">

saturation voltage</SPAN>

) there is no longer enough voltage between the gate and the drain end of the channel to support any channel charge. Clearly a small amount of charge remains or the current would go to zero, but with very little free charge the channel resistance in a small region close to the drain increases rapidly and any further increase in <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 is dropped over this region. Thus for <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 &gt; <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 (the <SPAN CLASS="Definition">

saturation region</SPAN>

, or pentode region, of operation) the drain current <SPAN CLASS="EquationVariables">

IDS </SPAN>

remains approximately constant at the <SPAN CLASS="Definition">

saturation current</SPAN>

, <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSn</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

, where  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=377599">

 </A>

<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSn</SUB>

<SUB CLASS="Subscript">

(sat)</SUB>

 = (<SPAN CLASS="Symbol">

b</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

/2)(<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -