⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch02.1.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML EXPERIMENTAL 970324//EN">

<HTML>

<HEAD>

<META NAME="GENERATOR" CONTENT="Adobe FrameMaker 5.5/HTML Export Filter">



<TITLE> 2.1&nbsp;CMOS Transistors</TITLE></HEAD><!--#include file="top.html"--><!--#include file="header.html"-->



<DIV>

<P>[&nbsp;<A HREF="CH02.htm">Chapter&nbsp;start</A>&nbsp;]&nbsp;[&nbsp;<A HREF="CH02.htm">Previous&nbsp;page</A>&nbsp;]&nbsp;[&nbsp;<A HREF="CH02.2.htm">Next&nbsp;page</A>&nbsp;]</P><!--#include file="AmazonAsic.html"--><HR></DIV>

<H1 CLASS="Heading1">

<A NAME="pgfId=8524">

 </A>

2.1&nbsp;CMOS Transistors</H1>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=142607">

 </A>

Figure&nbsp;2.3 illustrates how electrons and holes abandon their dopant atoms leaving a <SPAN CLASS="Definition">

depletion region</SPAN>

 around a transistor&#8217;s source and drain. The region between source and drain is normally nonconducting. To make an <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor conducting, we must apply a positive voltage <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 (the gate voltage with respect to the source) that is greater than the <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor <SPAN CLASS="Definition">

threshold voltage</SPAN>

, <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 (a typical value is 0.5 V and, as far as we are presently concerned, is a constant). This establishes a thin (<SPAN CLASS="Symbol">

&#170;</SPAN>

 50 &Aring;) conducting channel of electrons under the gate. MOS transistors can carry a very small current (the <SPAN CLASS="Definition">

subthreshold current</SPAN>

&#8212;a few microamperes or less) with <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &lt; <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

, but we shall ignore this. A transistor can be conducting (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &gt; <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

) without any current flowing. To make current flow in an <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor we must also apply a positive voltage, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

, to the drain with respect to the source. Figure&nbsp;2.3 shows these connections and the connection to the fourth terminal of an MOS transistor&#8212;the <SPAN CLASS="Definition">

bulk</SPAN>

 (<SPAN CLASS="Definition">

well</SPAN>

, <SPAN CLASS="Definition">

tub</SPAN>

, or <SPAN CLASS="Definition">

substrate</SPAN>

) terminal. For an <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor we must connect the bulk to the most negative potential, GND or VSS, to reverse bias the bulk-to-drain and bulk-to-source <SPAN CLASS="EmphasisPrefix">

pn</SPAN>

-diodes. The arrow in the four-terminal <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor symbol in Figure&nbsp;2.3 reflects the polarity of these <SPAN CLASS="EmphasisPrefix">

pn</SPAN>

-diodes.  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=200916">

 </A>

<IMG SRC="CH02-3.gif" ALIGN="BASELINE">

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigureTitle">

<A NAME="pgfId=200919">

 </A>

FIGURE&nbsp;2.3&nbsp;An <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel MOS transistor. The gate-oxide thickness, <SPAN CLASS="EquationNumber">

T</SPAN>

<SUB CLASS="Subscript">

OX</SUB>

, is approximately 100 angstroms (0.01 <SPAN CLASS="Symbol">

m</SPAN>

m). A typical transistor length, <SPAN CLASS="EquationNumber">

L</SPAN>

 <SPAN CLASS="EquationNumber">

=</SPAN>

 <SPAN CLASS="EquationNumber">

2</SPAN>

<SPAN CLASS="Symbol">

l</SPAN>

. The bulk may be either the substrate or a well. The diodes represent <SPAN CLASS="EmphasisPrefix">

pn</SPAN>

-junctions that must be reverse-biased.</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=8532">

 </A>

The current flowing in the transistor is &nbsp;</P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366844">

 </A>

current (amperes) = charge (coulombs) per unit time (second).</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=366846">

 </A>

(2.1)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=10322">

 </A>

We can express the current in terms of the total charge in the channel, <SPAN CLASS="EquationVariables">

Q</SPAN>

 (imagine taking a picture and counting the number of electrons in the channel at that instant). If <SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

f</SUB>

<SPAN CLASS="EquationVariables">

 </SPAN>

(for <SPAN CLASS="Definition">

time of flight</SPAN>

&#8212;sometimes called the <SPAN CLASS="Definition">

transit time</SPAN>

) is the time that it takes an electron to cross between source and drain, the drain-to-source current, <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSn</SUB>

, is  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366814">

 </A>

<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DSn</SUB>

 = <SPAN CLASS="EquationVariables">

Q</SPAN>

/<SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

f</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=366817">

 </A>

(2.2)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=10351">

 </A>

We need to find <SPAN CLASS="EquationVariables">

Q </SPAN>

and <SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

f</SUB>

. The velocity of the electrons <SPAN CLASS="EquationNumber">

v</SPAN>

 (a vector) is given by the equation that forms the basis of Ohm&#8217;s law:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366870">

 </A>

<SPAN CLASS="Vector">

v</SPAN>

 = &#8211;<SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

<SPAN CLASS="Vector">

E</SPAN>

 ,</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=366872">

 </A>

(2.3)</P>

</TD>

</TR>

</TABLE>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=203253">

 </A>

where <SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

 is the <SPAN CLASS="Definition">

electron mobility</SPAN>

 (<SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

p</SUB>

 is the <SPAN CLASS="Definition">

hole mobility</SPAN>

) and <SPAN CLASS="Bold">

E</SPAN>

 is the electric field (with units Vm<SUP CLASS="Superscript">

&#8211;1</SUP>

). </P>

<P CLASS="Body">

<A NAME="pgfId=301928">

 </A>

Typical <SPAN CLASS="Definition">

carrier mobility</SPAN>

 values are <SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

 = 500&#8211;1000 cm<SUP CLASS="Superscript">

2</SUP>

V<SUP CLASS="Superscript">

&#8211;1</SUP>

s<SUP CLASS="Superscript">

&#8211;1</SUP>

 and <SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

p</SUB>

 = 100&#8211;400 cm<SUP CLASS="Superscript">

2</SUP>

V<SUP CLASS="Superscript">

&#8211;1</SUP>

s<SUP CLASS="Superscript">

&#8211;1</SUP>

. Equation&nbsp;2.3 is a vector equation, but we shall ignore the vertical electric field and concentrate on the horizontal electric field, <SPAN CLASS="EquationVariables">

E</SPAN>

<SUB CLASS="SubscriptVariable">

x</SUB>

, that moves the electrons between source and drain. The horizontal component of the electric field is <SPAN CLASS="EquationVariables">

E</SPAN>

<SUB CLASS="SubscriptVariable">

x</SUB>

 = &#8211;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

/<SPAN CLASS="EquationNumber">

L, </SPAN>

directed from the drain to the source, where <SPAN CLASS="EquationNumber">

L</SPAN>

 is the channel length (see Figure&nbsp;2.3). The electrons travel a distance <SPAN CLASS="EquationNumber">

L</SPAN>

 with horizontal velocity <SPAN CLASS="EquationVariables">

v</SPAN>

<SUB CLASS="SubscriptVariable">

x</SUB>

 = &#8211;<SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

<SPAN CLASS="EquationVariables">

E</SPAN>

<SUB CLASS="SubscriptVariable">

x</SUB>

, so that  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=366903">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366938">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366905">

 </A>

L</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366907">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366952">

 </A>

L<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=366909">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=366911">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=366913">

 </A>

<SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

f</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366940">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366915">

 </A>

<SPAN CLASS="EquationVariables">

&#8211;&#8211;&#8211;</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366917">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366954">

 </A>

&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=366919">

 </A>

.</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=366921">

 </A>

(2.4)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=366923">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366942">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366925">

 </A>

<SPAN CLASS="EquationVariables">

v</SPAN>

<SUB CLASS="SubscriptVariable">

x</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366927">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366956">

 </A>

<SPAN CLASS="Symbol">

m</SPAN>

<SUB CLASS="SubscriptVariable">

n</SUB>

<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=366929">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=366931">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=10354">

 </A>

Next we find the channel charge, <SPAN CLASS="EquationVariables">

Q</SPAN>

. The channel and the gate form the plates of a capacitor, separated by an insulator&#8212;the gate oxide. We know that the charge on a linear capacitor, C, is <SPAN CLASS="EquationVariables">

Q</SPAN>

 = <SPAN CLASS="EquationNumber">

C</SPAN>

<SPAN CLASS="EquationVariables">

V</SPAN>

. Our lower plate, the channel, is not a linear conductor. Charge only appears on the lower plate when the voltage between the gate and the channel, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GC</SUB>

, exceeds the <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel threshold voltage. For our nonlinear capacitor we need to modify the equation for a linear capacitor to the following:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=366976">

 </A>

<SPAN CLASS="EquationVariables">

Q</SPAN>

 = <SPAN CLASS="EquationVariables">

C</SPAN>

(<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GC</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

) .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=366978">

 </A>

(2.5)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=202772">

 </A>

The lower plate of our capacitor is resistive and conducting current, so that the potential in the channel, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GC</SUB>

, varies. In fact, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GC</SUB>

 = <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 at the source and <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GC</SUB>

 = <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 at the drain. What we really should do is find an expression for the channel charge as a function of channel voltage and sum (integrate) the charge all the way across the channel, from <SPAN CLASS="EquationVariables">

x</SPAN>

 = 0 (at the source) to <SPAN CLASS="EquationVariables">

x</SPAN>

 = <SPAN CLASS="EquationNumber">

L</SPAN>

 (at the drain). Instead we shall assume that the channel voltage, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GC</SUB>

 (<SPAN CLASS="EquationVariables">

x</SPAN>

), is a linear function of distance from the source and take the average value of the charge, which is thus  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=376082">

 </A>

<SPAN CLASS="EquationVariables">

Q</SPAN>

 = <SPAN CLASS="EquationVariables">

C </SPAN>

[ (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

) &#8211; 0.5 <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

 ] .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -