⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch13.6.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
  +  0.65  <SPAN CLASS="Symbol">

&#165; </SPAN>

4.6642)  <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=132509">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="EquationAlign">

<A NAME="pgfId=132511">

 </A>

=  0.053  +  2.749<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=132513">

 </A>

<A NAME="22987">

 </A>

(13.21)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=69818">

 </A>

	We can now compare Eq.&nbsp;<A HREF="CH13.6.htm#22987" CLASS="XRef">

13.21</A>

 with the prop&#8211;ramp model. The prop&#8211;ramp parameters for this logic cell (from the primitive model in <A HREF="CH13.5.htm#40162" CLASS="XRef">

Section&nbsp;13.5.1</A>

) are:</P>

<P CLASS="ComputerOneLine">

<A NAME="pgfId=69676">

 </A>

tA1D_fr = |( Rec prop = 0.078;  ramp = 2.749;  End);</P>

<P CLASS="Body">

<A NAME="pgfId=69668">

 </A>

These parameters predict the following prop&#8211;ramp delay (0.35/0.65 trip points):  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="EquationAlign">

<A NAME="pgfId=132554">

 </A>

<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

PR</SUB>

    (65  %)  =  0.078  +  2.749<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=132556">

 </A>

(13.22)</P>

</TD>

</TR>

</TABLE>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=90700">

 </A>

The input-slope delay model and the prop&#8211;ramp delay model predict similar delays in the fast-ramp region, but for slower inputs the differences can become significant.</P>

</DIV>

<DIV>

<H2 CLASS="Heading2">

<A NAME="pgfId=90702">

 </A>

13.6.3&nbsp;<A NAME="12306">

 </A>

Limitations of Logic Simulation</H2>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=13512">

 </A>

<A HREF="CH13.6.htm#11892" CLASS="XRef">

Table&nbsp;13.11</A>

 shows the switching characteristics of a two-input NAND gate (1X drive) from a commercial 1  <SPAN CLASS="Symbol">

m</SPAN>

m gate-array family. The difference in propagation delay (with FO  =  0) between the inputs A and B is </P>

<P CLASS="Equation">

<A NAME="pgfId=13514">

 </A>

(0.25  &#8211;  0.17)  <SPAN CLASS="Symbol">

&#165;</SPAN>

  2  /  (0.25  +  0.17)  =  38  %.</P>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=13516">

 </A>

This difference is taken into account only by a pin-to-pin delay model.</P>

<P CLASS="Body">

<A NAME="pgfId=119703">

 </A>

&nbsp;</P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="8">

<P CLASS="TableTitle">

<A NAME="pgfId=119708">

 </A>

TABLE&nbsp;13.11&nbsp;<A NAME="11892">

 </A>

Switching characteristics of a two-input NAND gate.</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119724">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119726">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="5">

<P CLASS="TableFirst">

<A NAME="pgfId=119731">

 </A>

Fanout<A HREF="#pgfId=119730" CLASS="footnote">

3</A>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119741">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119743">

 </A>

<SPAN CLASS="TableHeads">

Symbol</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119745">

 </A>

<SPAN CLASS="TableHeads">

Parameter</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119747">

 </A>

<SPAN CLASS="TableHeads">

FO = 0</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=119748">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119750">

 </A>

<SPAN CLASS="TableHeads">

FO = 1</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=119751">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119753">

 </A>

<SPAN CLASS="TableHeads">

FO = 2</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=119754">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119756">

 </A>

<SPAN CLASS="TableHeads">

FO = 4</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=119757">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119759">

 </A>

<SPAN CLASS="TableHeads">

FO = 8</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=119760">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=119762">

 </A>

<SPAN CLASS="TableHeads">

K</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=119763">

 </A>

/nspF<SUP CLASS="Superscript">

&#8211;1</SUP>

</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119765">

 </A>

<SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="Subscript">

PLH</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLeft">

<A NAME="pgfId=119767">

 </A>

Propagation delay, A to X</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119769">

 </A>

0.25</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119771">

 </A>

0.35</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119773">

 </A>

0.45</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119775">

 </A>

0.65</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119777">

 </A>

1.05</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119779">

 </A>

1.25</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119781">

 </A>

<SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="Subscript">

PHL</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLeft">

<A NAME="pgfId=119783">

 </A>

Propagation delay, B to X</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119785">

 </A>

0.17</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119787">

 </A>

0.24</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119789">

 </A>

0.30</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119791">

 </A>

0.42</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119793">

 </A>

0.68</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119795">

 </A>

0.79</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119797">

 </A>

<SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="Subscript">

r</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLeft">

<A NAME="pgfId=119799">

 </A>

Output rise time, X</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119801">

 </A>

1.01</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119803">

 </A>

1.28</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119805">

 </A>

1.56</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119807">

 </A>

2.10</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119809">

 </A>

3.19</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119811">

 </A>

3.40</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119813">

 </A>

<SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="Subscript">

f</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLeft">

<A NAME="pgfId=119815">

 </A>

Output fall time, X</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119817">

 </A>

0.54</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119819">

 </A>

0.69</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119821">

 </A>

0.84</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119823">

 </A>

1.13</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119825">

 </A>

1.71</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=119827">

 </A>

1.83</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=69914">

 </A>

Timing information for most gate-level simulators is calculated once, before simulation, using a delay calculator. This works as long as the logic cell delays and signal ramps do not change. There are some cases in which this is not true. <A HREF="CH13.6.htm#35261" CLASS="XRef">

Table&nbsp;13.12</A>

 shows the switching characteristics of a half adder. In addition to pin-to-pin timing differences there is a timing difference depending on state. For example, the pin-to-pin timing from input pin A to the output pin S depends on the state of the input pin B. Depending on whether B = '0' or B = '1' the difference in propagation delay (at FO  =  0) is </P>

<P CLASS="Equation">

<A NAME="pgfId=13533">

 </A>

(0.93  &#8211;  0.58)  <SPAN CLASS="Symbol">

&#165;</SPAN>

  2  /  (0.93  +  0.58)  =  46  %.</P>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=13535">

 </A>

This <SPAN CLASS="Definition">

state-dependent timing</SPAN>

<A NAME="marker=81689">

 </A>

 is not taken into account by simple pin-to-pin delay models and is not accounted for by most gate-level simulators.</P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="8">

<P CLASS="TableTitle">

<A NAME="pgfId=30262">

 </A>

TABLE&nbsp;13.12&nbsp;<A NAME="35261">

 </A>

Switching characteristics of a half adder. </P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=32781">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=32783">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="5">

<P CLASS="TableFirst">

<A NAME="pgfId=32785">

 </A>

Fanout<SPAN CLASS="TableHeads">

<A HREF="#pgfId=32801" CLASS="footnote">

4</A>

</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=32795">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=30279">

 </A>

<SPAN CLASS="TableHeads">

Symbol</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=30281">

 </A>

<SPAN CLASS="TableHeads">

Parameter</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=30286">

 </A>

<SPAN CLASS="TableHeads">

FO = 0</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=30427">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=30288">

 </A>

<SPAN CLASS="TableHeads">

FO = 1</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=30426">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=30290">

 </A>

<SPAN CLASS="TableHeads">

FO = 2</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=30432">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=30292">

 </A>

<SPAN CLASS="TableHeads">

FO = 4</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=30437">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFirst">

<A NAME="pgfId=30294">

 </A>

<SPAN CLASS="TableHeads">

FO = 8</SPAN>

</P>

<P CLASS="TableFirst">

<A NAME="pgfId=30442">

 </A>

/ns</P>

</TD>

<TD ROWSPAN="1" COLSPAN="

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -