⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch13.6.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=132144">

 </A>

<A NAME="10560">

 </A>

(13.14)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132146">

 </A>

and</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=132148">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132150">

 </A>

<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

1</SUB>

  =  <SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

1</SUB>

  +<SPAN CLASS="EquationVariables">

B</SPAN>

  <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

  +  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

1</SUB>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

  .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=132152">

 </A>

(13.15)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=69560">

 </A>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

 is the critical ramp that separates two regions of operation, we call these slow ramp and fast ramp. A sensible definition for <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

R </SUB>

is the point at which the end of the input ramp occurs at the same time the output reaches the 0.5 trip point. This leads to the following equation for <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125365">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125353">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125428">

 </A>

<SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

0</SUB>

 + <SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

1</SUB>

 + (<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

0</SUB>

 + <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

1</SUB>

) <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125329">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=125332">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125367">

 </A>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125355">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125430">

 </A>

&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125345">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=125347">

 </A>

(13.16)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125369">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125357">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125432">

 </A>

2 (1 &#8211; <SPAN CLASS="EquationVariables">

B</SPAN>

)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=125349">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=125351">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=65232">

 </A>

It is convenient to define two more parameters:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132191">

 </A>

<SPAN CLASS="EquationVariables">

d</SPAN>

<SUB CLASS="SubscriptVariable">

A</SUB>

  =  <SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

1</SUB>

  &#8211;  <SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

0</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132193">

 </A>

and</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132195">

 </A>

<SPAN CLASS="EquationVariables">

d</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

  =  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

1  </SUB>

&#8211;  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

0</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132168">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=132170">

 </A>

<A NAME="12564">

 </A>

(13.17)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=69622">

 </A>

<SPAN CLASS="EquationVariables">

</SPAN>

In the region that <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

  &gt;  <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

 , we can simplify Eqs.&nbsp;<A HREF="CH13.6.htm#10560" CLASS="XRef">

13.14</A>

 and by using the definitions in Eq.&nbsp;<A HREF="CH13.6.htm#12564" CLASS="XRef">

13.17</A>

, as follows:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132271">

 </A>

<SPAN CLASS="EquationVariables">

D</SPAN>

  =  (<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

1</SUB>

 + <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

0</SUB>

 &#8211;<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

)/2  =  <SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

0</SUB>

  +  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

0</SUB>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

  +  <SPAN CLASS="EquationVariables">

d</SPAN>

<SUB CLASS="SubscriptVariable">

A</SUB>

  /2  +  <SPAN CLASS="EquationVariables">

d</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

/2</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=132273">

 </A>

(13.18)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132275">

 </A>

and</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=132277">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132279">

 </A>

<SPAN CLASS="EquationVariables">

O</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

  =  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

1</SUB>

  &#8211;  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

0</SUB>

  =  <SPAN CLASS="EquationVariables">

d</SPAN>

<SUB CLASS="SubscriptVariable">

A</SUB>

  +  <SPAN CLASS="EquationVariables">

d</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=132281">

 </A>

(13.19)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=65225">

 </A>

Now we can understand the timing parameters in the primitive model in <A HREF="CH13.5.htm#40162" CLASS="XRef">

Section&nbsp;13.5.1</A>

. For example, the following parameter, <SPAN CLASS="BodyComputer">

tA1D_fr</SPAN>

, models the falling input to rising output waveform delay for the logic cell (the units are a consistent set: all times are measured in nanoseconds and capacitances in picofarads):</P>

<P CLASS="ComputerOneLine">

<A NAME="pgfId=65228">

 </A>

A0 = 0.0015;dA = 0.0789;D0 = -0.2828;dD = 4.6642;B = 0.6879;Z = 0.5630;</P>

<P CLASS="Body">

<A NAME="pgfId=69715">

 </A>

The input-slope model predicts delay in the fast-ramp region, <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

ISM</SUB>

  (50  %, FR), as follows (0.5 trip points):  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132293">

 </A>

<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

ISM</SUB>

    (50  %, FR)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=132295">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132297">

 </A>

= <SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

0</SUB>

  +  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

0</SUB>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

  +  0.5<SPAN CLASS="EquationVariables">

O</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

  =  <SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

0</SUB>

  +  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

0</SUB>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

  +  <SPAN CLASS="EquationVariables">

d</SPAN>

<SUB CLASS="SubscriptVariable">

A</SUB>

  /2  +  <SPAN CLASS="EquationVariables">

d</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

/2</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=132299">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="EquationAlign">

<A NAME="pgfId=132316">

 </A>

= 0.0015  +  0.5  <SPAN CLASS="Symbol">

&#165; </SPAN>

  0.0789  +  (&#8211;0.2828  +  0.5  <SPAN CLASS="Symbol">

&#165; </SPAN>

  4.6642)  <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=132303">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="EquationAlign">

<A NAME="pgfId=132321">

 </A>

=   0.041  +  2.05<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

.</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=132323">

 </A>

(13.20)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=69684">

 </A>

We can adjust this delay to 0.35/0.65 trip points as follows:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132499">

 </A>

<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

ISM</SUB>

    (65  %, FR)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=132501">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132503">

 </A>

=   <SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

0</SUB>

  +  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

0</SUB>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

  +   0.65<SPAN CLASS="EquationVariables">

  O</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=132505">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="EquationAlign">

<A NAME="pgfId=132507">

 </A>

= 0.0015  +  0.65  <SPAN CLASS="Symbol">

&#165; </SPAN>

0.0789  +  (  &#8211;0.2828<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -