⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch13.6.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
	 1.31</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131662">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131664">

 </A>

<SPAN CLASS="TableHeads">

Temperature/&#176;C</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131666">

 </A>

<SPAN CLASS="TableHeads">

4.5V</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131668">

 </A>

<SPAN CLASS="TableHeads">

4.75V</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131670">

 </A>

<SPAN CLASS="TableHeads">

5.00V</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131672">

 </A>

<SPAN CLASS="TableHeads">

5.25V</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131674">

 </A>

<SPAN CLASS="TableHeads">

5.50V</SPAN>

</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131676">

 </A>

Nominal</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131678">

 </A>

	 1.0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131680">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131682">

 </A>

&#8211;40</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131684">

 </A>

0.77</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131686">

 </A>

0.73</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131688">

 </A>

0.68</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131690">

 </A>

0.64</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131692">

 </A>

0.61</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131694">

 </A>

Fast</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131696">

 </A>

	 0.75</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131698">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131700">

 </A>

  0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131702">

 </A>

1.00</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131704">

 </A>

0.93</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131706">

 </A>

0.87</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131708">

 </A>

0.82</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131710">

 </A>

0.78</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131712">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131714">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131716">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131718">

 </A>

 25</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131720">

 </A>

1.14</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131722">

 </A>

1.07</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131724">

 </A>

1.00</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131726">

 </A>

0.94</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131728">

 </A>

0.90</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131730">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131732">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131734">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131736">

 </A>

 85</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131738">

 </A>

1.50</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131740">

 </A>

1.40</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131742">

 </A>

1.33</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131744">

 </A>

1.26</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131746">

 </A>

1.20</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131748">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131750">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131752">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131754">

 </A>

100</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131756">

 </A>

1.60</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131758">

 </A>

1.49</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131760">

 </A>

1.41</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131762">

 </A>

1.34</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131764">

 </A>

1.28</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131766">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131768">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131770">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131772">

 </A>

125</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131774">

 </A>

1.76</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131776">

 </A>

1.65</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131778">

 </A>

1.56</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131780">

 </A>

1.47</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=131782">

 </A>

1.41</P>

</TD>

</TR>

</TABLE>

</DIV>

<DIV>

<H2 CLASS="Heading2">

<A NAME="pgfId=65203">

 </A>

13.6.2&nbsp;Input-Slope Delay Model</H2>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=68809">

 </A>

It is increasingly important for submicron technologies to account for the effects of the rise (and fall) time of the input waveforms to a logic cell. The nonlinear delay model described in this section was developed by Mike Misheloff at VLSI Technology and then at Compass. There are, however, no standards in this area&#8212;each ASIC company has its own, often proprietary, model.</P>

<P CLASS="Body">

<A NAME="pgfId=71279">

 </A>

We begin with some definitions:</P>

<UL>

<LI CLASS="BulletFirst">

<A NAME="pgfId=65224">

 </A>

<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

0</SUB>

 is the time from the beginning of the input to beginning of the output.</LI>

<LI CLASS="BulletList">

<A NAME="pgfId=65207">

 </A>

<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

1</SUB>

 is the time from the beginning of the input to the end of the output.</LI>

<LI CLASS="BulletLast">

<A NAME="pgfId=65209">

 </A>

<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

 is the time from the beginning to the end of the input ramp.</LI>

</UL>

<P CLASS="Body">

<A NAME="pgfId=65208">

 </A>

In these definitions &#8220;beginning&#8221; and &#8220;end&#8221; refer to the projected intersections of the input waveform or the output waveform with <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

 and <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

SS</SUB>

 as appropriate. Then we can calculate the delay, <SPAN CLASS="EquationVariables">

D</SPAN>

 (measured with 0.5 trip points at input and output),   and output ramp, <SPAN CLASS="EquationVariables">

O</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

, as follows:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=131837">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=131818">

 </A>

<SPAN CLASS="EquationVariables">

D</SPAN>

  =  (<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

1</SUB>

 + <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

0</SUB>

 &#8211;<SPAN CLASS="EquationVariables">

  I</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

)  /  2 </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=131820">

 </A>

(13.12)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=131839">

 </A>

and</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=131829">

 </A>

<SPAN CLASS="EquationVariables">

O</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

  =  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

1</SUB>

  &#8211;  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

0</SUB>

 .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=131831">

 </A>

(13.13)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=65214">

 </A>

Experimentally we find that the times, <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

0</SUB>

 and <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

1</SUB>

, are accurately modeled by the following equations:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=132142">

 </A>

<SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="SubscriptVariable">

t</SUB>

<SUB CLASS="Subscript">

0</SUB>

  =  <SPAN CLASS="EquationVariables">

A</SPAN>

<SUB CLASS="Subscript">

0</SUB>

  +  <SPAN CLASS="EquationVariables">

D</SPAN>

<SUB CLASS="Subscript">

0</SUB>

  <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

L</SUB>

  +  <SPAN CLASS="EquationVariables">

B</SPAN>

   <SPAN CLASS="Symbol">

&#165;</SPAN>

  min (<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

, <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

)  +  <SPAN CLASS="EquationVariables">

Z</SPAN>

  <SPAN CLASS="Symbol">

&#165;</SPAN>

  max (0, <SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

  &#8211;  <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

R</SUB>

)</P>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -