📄 ch13.6.htm
字号:
1.31</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131662">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131664">
</A>
<SPAN CLASS="TableHeads">
Temperature/°C</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131666">
</A>
<SPAN CLASS="TableHeads">
4.5V</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131668">
</A>
<SPAN CLASS="TableHeads">
4.75V</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131670">
</A>
<SPAN CLASS="TableHeads">
5.00V</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131672">
</A>
<SPAN CLASS="TableHeads">
5.25V</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131674">
</A>
<SPAN CLASS="TableHeads">
5.50V</SPAN>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131676">
</A>
Nominal</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131678">
</A>
1.0</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131680">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131682">
</A>
–40</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131684">
</A>
0.77</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131686">
</A>
0.73</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131688">
</A>
0.68</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131690">
</A>
0.64</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131692">
</A>
0.61</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131694">
</A>
Fast</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131696">
</A>
0.75</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131698">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131700">
</A>
0</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131702">
</A>
1.00</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131704">
</A>
0.93</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131706">
</A>
0.87</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131708">
</A>
0.82</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131710">
</A>
0.78</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131712">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131714">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131716">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131718">
</A>
25</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131720">
</A>
1.14</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131722">
</A>
1.07</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131724">
</A>
1.00</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131726">
</A>
0.94</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131728">
</A>
0.90</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131730">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131732">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131734">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131736">
</A>
85</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131738">
</A>
1.50</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131740">
</A>
1.40</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131742">
</A>
1.33</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131744">
</A>
1.26</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131746">
</A>
1.20</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131748">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131750">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131752">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131754">
</A>
100</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131756">
</A>
1.60</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131758">
</A>
1.49</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131760">
</A>
1.41</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131762">
</A>
1.34</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131764">
</A>
1.28</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131766">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131768">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131770">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131772">
</A>
125</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131774">
</A>
1.76</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131776">
</A>
1.65</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131778">
</A>
1.56</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131780">
</A>
1.47</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="Table">
<A NAME="pgfId=131782">
</A>
1.41</P>
</TD>
</TR>
</TABLE>
</DIV>
<DIV>
<H2 CLASS="Heading2">
<A NAME="pgfId=65203">
</A>
13.6.2 Input-Slope Delay Model</H2>
<P CLASS="BodyAfterHead">
<A NAME="pgfId=68809">
</A>
It is increasingly important for submicron technologies to account for the effects of the rise (and fall) time of the input waveforms to a logic cell. The nonlinear delay model described in this section was developed by Mike Misheloff at VLSI Technology and then at Compass. There are, however, no standards in this area—each ASIC company has its own, often proprietary, model.</P>
<P CLASS="Body">
<A NAME="pgfId=71279">
</A>
We begin with some definitions:</P>
<UL>
<LI CLASS="BulletFirst">
<A NAME="pgfId=65224">
</A>
<SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="SubscriptVariable">
t</SUB>
<SUB CLASS="Subscript">
0</SUB>
is the time from the beginning of the input to beginning of the output.</LI>
<LI CLASS="BulletList">
<A NAME="pgfId=65207">
</A>
<SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="SubscriptVariable">
t</SUB>
<SUB CLASS="Subscript">
1</SUB>
is the time from the beginning of the input to the end of the output.</LI>
<LI CLASS="BulletLast">
<A NAME="pgfId=65209">
</A>
<SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
R</SUB>
is the time from the beginning to the end of the input ramp.</LI>
</UL>
<P CLASS="Body">
<A NAME="pgfId=65208">
</A>
In these definitions “beginning” and “end” refer to the projected intersections of the input waveform or the output waveform with <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DD</SUB>
and <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
SS</SUB>
as appropriate. Then we can calculate the delay, <SPAN CLASS="EquationVariables">
D</SPAN>
(measured with 0.5 trip points at input and output), and output ramp, <SPAN CLASS="EquationVariables">
O</SPAN>
<SUB CLASS="SubscriptVariable">
R</SUB>
, as follows: </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=131837">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=131818">
</A>
<SPAN CLASS="EquationVariables">
D</SPAN>
= (<SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="SubscriptVariable">
t</SUB>
<SUB CLASS="Subscript">
1</SUB>
+ <SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="SubscriptVariable">
t</SUB>
<SUB CLASS="Subscript">
0</SUB>
–<SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
R</SUB>
) / 2 </P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=131820">
</A>
(13.12)</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=131839">
</A>
and</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=131829">
</A>
<SPAN CLASS="EquationVariables">
O</SPAN>
<SUB CLASS="SubscriptVariable">
R</SUB>
= <SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="SubscriptVariable">
t</SUB>
<SUB CLASS="Subscript">
1</SUB>
– <SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="SubscriptVariable">
t</SUB>
<SUB CLASS="Subscript">
0</SUB>
.</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=131831">
</A>
(13.13)</P>
</TD>
</TR>
</TABLE>
<P CLASS="Body">
<A NAME="pgfId=65214">
</A>
Experimentally we find that the times, <SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="SubscriptVariable">
t</SUB>
<SUB CLASS="Subscript">
0</SUB>
and <SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="SubscriptVariable">
t</SUB>
<SUB CLASS="Subscript">
1</SUB>
, are accurately modeled by the following equations: </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=132142">
</A>
<SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="SubscriptVariable">
t</SUB>
<SUB CLASS="Subscript">
0</SUB>
= <SPAN CLASS="EquationVariables">
A</SPAN>
<SUB CLASS="Subscript">
0</SUB>
+ <SPAN CLASS="EquationVariables">
D</SPAN>
<SUB CLASS="Subscript">
0</SUB>
<SPAN CLASS="EquationVariables">
C</SPAN>
<SUB CLASS="SubscriptVariable">
L</SUB>
+ <SPAN CLASS="EquationVariables">
B</SPAN>
<SPAN CLASS="Symbol">
¥</SPAN>
min (<SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
R</SUB>
, <SPAN CLASS="EquationVariables">
C</SPAN>
<SUB CLASS="SubscriptVariable">
R</SUB>
) + <SPAN CLASS="EquationVariables">
Z</SPAN>
<SPAN CLASS="Symbol">
¥</SPAN>
max (0, <SPAN CLASS="EquationVariables">
I</SPAN>
<SUB CLASS="SubscriptVariable">
R</SUB>
– <SPAN CLASS="EquationVariables">
C</SPAN>
<SUB CLASS="SubscriptVariable">
R</SUB>
)</P>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -