⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch13.a.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
<P CLASS="Computer">

<A NAME="pgfId=108545">

 </A>

+ U0=0.2, LU0=6E-2, WU0=-6E-2</P>

<P CLASS="Computer">

<A NAME="pgfId=108546">

 </A>

+ U1=1E-2, LU1=1E-2, WU1=7E-4</P>

<P CLASS="Computer">

<A NAME="pgfId=108547">

 </A>

+ X2MZ=7, LX2MZ=-2, WX2MZ=1</P>

<P CLASS="Computer">

<A NAME="pgfId=108548">

 </A>

+ X2E= 5E-5, LX2E=-1E-3, WX2E=-2E-4</P>

<P CLASS="Computer">

<A NAME="pgfId=108549">

 </A>

+ X3E=8E-4, LX3E=-2E-4, WX3E=-1E-3</P>

<P CLASS="Computer">

<A NAME="pgfId=108550">

 </A>

+ X2U0=9E-3, LX2U0=-2E-3, WX2U0=2E-3</P>

<P CLASS="Computer">

<A NAME="pgfId=108551">

 </A>

+ X2U1=6E-4, LX2U1=5E-4, WX2U1=3E-4</P>

<P CLASS="Computer">

<A NAME="pgfId=108552">

 </A>

+ MUS=150, LMUS=10, WMUS=4</P>

<P CLASS="Computer">

<A NAME="pgfId=108553">

 </A>

+ X2MS=6, LX2MS=-0.7, WX2MS=2</P>

<P CLASS="Computer">

<A NAME="pgfId=108554">

 </A>

+ X3MS=-1E-2, LX3MS=2, WX3MS=1</P>

<P CLASS="Computer">

<A NAME="pgfId=108555">

 </A>

+ X3U1=-1E-3, LX3U1=-5E-4, WX3U1=1E-3</P>

<P CLASS="Computer">

<A NAME="pgfId=108556">

 </A>

+ TOX=1E-2, TEMP=25, VDD=5</P>

<P CLASS="Computer">

<A NAME="pgfId=108557">

 </A>

+ CGDO=2.4E-10, CGSO=2.4E-10, CGBO=3.8E-10</P>

<P CLASS="Computer">

<A NAME="pgfId=108558">

 </A>

+ XPART=1</P>

<P CLASS="Computer">

<A NAME="pgfId=108559">

 </A>

+ N0=1, LN0=0, WN0=0</P>

<P CLASS="Computer">

<A NAME="pgfId=108560">

 </A>

+ NB=0, LNB=0, WNB=0</P>

<P CLASS="Computer">

<A NAME="pgfId=108561">

 </A>

+ ND=0, LND=0, WND=0</P>

<P CLASS="Computer">

<A NAME="pgfId=108562">

 </A>

* p+ diffusion </P>

<P CLASS="Computer">

<A NAME="pgfId=108563">

 </A>

+ RSH=2, CJ=9.5E-4, CJSW=2.5E-10</P>

<P CLASS="Computer">

<A NAME="pgfId=108564">

 </A>

+ JS=1E-8, PB=0.85, PBSW=0.85</P>

<P CLASS="Computer">

<A NAME="pgfId=108565">

 </A>

+ MJ=0.44, MJSW=0.24, WDF=0</P>

<P CLASS="Computer">

<A NAME="pgfId=108566">

 </A>

*, DS=0</P>

</TD>

</TR>

</TABLE>

</OL>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=108571">

 </A>

<A HREF="CH13.a.htm#31851" CLASS="XRef">

Table&nbsp;13.15</A>

 shows the BSIM1 parameters (in the PSpice <SPAN CLASS="BodyComputer">

LEVEL  =  4</SPAN>

 format) for the G5 process. The <SPAN CLASS="Definition">

Berkeley short-channel IGFET model</SPAN>

<A NAME="marker=108878">

 </A>

 (<SPAN CLASS="Definition">

BSIM</SPAN>

<A NAME="marker=108880">

 </A>

<A NAME="marker=108879">

 </A>

) family models capacitance in terms of charge. In Sections&nbsp;2.1 and 3.2 we treated the gate&#8211;drain capacitance, <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

GD</SUB>

, for example, as if it were a <SPAN CLASS="Definition">

reciprocal capacitance</SPAN>

<A NAME="marker=109075">

 </A>

, and could be written assuming there was charge associated with the gate, <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

, and the drain, <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

, as follows:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127420">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127422">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127424">

 </A>

-&#8706;<SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127426">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=127428">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127570">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127688">

 </A>

-&#8706;<SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=127574">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=127430">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127432">

 </A>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

GD</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127434">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127436">

 </A>

&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127438">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127440">

 </A>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

DG</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127576">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127690">

 </A>

&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=127580">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=127442">

 </A>

<A NAME="12593">

 </A>

(13.31)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127444">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127446">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127448">

 </A>

&#8706;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127450">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=127452">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127582">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=127692">

 </A>

&#8706;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=127586">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=127454">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=108612">

 </A>

Equation&nbsp;<A HREF="CH13.a.htm#12593" CLASS="XRef">

13.31</A>

 (the <A NAME="marker=109068">

 </A>

<SPAN CLASS="Definition">

Meyer model</SPAN>

) would be true if the gate and drain formed a parallel plate capacitor and <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

  =  &#8211;<SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

, but they do not. In general, <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

  &#8800;  &#8211;<SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

 and Eq.&nbsp;<A HREF="CH13.a.htm#12593" CLASS="XRef">

13.31</A>

 is not true. In an MOS transistor we have four regions of charge: <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

 (gate), <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

 (channel charge associated with the drain), <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

S</SUB>

 (channel charge associated with the drain), and <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

B</SUB>

 (charge in the bulk depletion region). These charges are not independent, since  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=128078">

 </A>

<SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

G </SUB>

+ <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

D </SUB>

+ <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

S </SUB>

+ <SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

B</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=128080">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=128082">

 </A>

0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=128096">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=128084">

 </A>

<A NAME="19634">

 </A>

(13.32)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=112798">

 </A>

We can form a 4  <SPAN CLASS="Symbol">

&#165;</SPAN>

  4 matrix, <SPAN CLASS="Vector">

M</SPAN>

, whose entries are &#8706;<SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

/&#8706;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

j</SUB>

, where <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

j</SUB>

  =  <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

S</SUB>

, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

D</SUB>

, and <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

B</SUB>

. Then <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

ii</SUB>

  =  <SPAN CLASS="EquationVariables">

M</SPAN>

<SUB CLASS="SubscriptVariable">

ii</SUB>

  are the terminal capacitances; and <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

ij</SUB>

  =  &#8211;<SPAN CLASS="EquationVariables">

M</SPAN>

<SUB CLASS="SubscriptVariable">

ij</SUB>

, where <SPAN CLASS="EquationVariables">

i</SPAN>

  &#8800;  <SPAN CLASS="EquationVariables">

j</SPAN>

, is a <SPAN CLASS="Definition">

transcapacitance</SPAN>

<A NAME="marker=112799">

 </A>

. Equation&nbsp;<A HREF="CH13.a.htm#19634" CLASS="XRef">

13.32</A>

 forces the sum of each column of <SPAN CLASS="URL">

M</SPAN>

 to be zero. Since the charges depend on voltage differences, there are only three independent voltages (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GB</SUB>

, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DB</SUB>

, and <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

SB</SUB>

, for example) and each row of <SPAN CLASS="Vector">

M</SPAN>

 must sum to zero. Thus, we have nine (= 16   &#8211;   7) independent entries in the matrix <SPAN CLASS="Vector">

M</SPAN>

. In general, <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

ij</SUB>

 is not necessarily equal to <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

ji</SUB>

. For example, using PSpice and a <SPAN CLASS="BodyComputer">

LEVEL  =  4</SPAN>

 BSIM model, there are nine independent partial derivatives, printed as follows:</P>

<P CLASS="ComputerFirst">

<A NAME="pgfId=108750">

 </A>

Derivatives of gate (dQg/dVxy) and bulk (dQb/dVxy) charges</P>

<P CLASS="Computer">

<A NAME="pgfId=108844">

 </A>

DQGDVGB      1.04E-14</P>

<P CLASS="Computer">

<A NAME="pgfId=108845">

 </A>

DQGDVDB     -1.99E-15</P>

<P CLASS="Computer">

<A NAME="pgfId=108846">

 </A>

DQGDVSB     -7.33E-15</P>

<P CLASS="Computer">

<A NAME="pgfId=108847">

 </A>

DQDDVGB     -1.99E-15</P>

<P CLASS="Computer">

<A NAME="pgfId=108848">

 </A>

DQDDVDB      1.99E-15</P>

<P CLASS="Computer">

<A NAME="pgfId=108849">

 </A>

DQDDVSB      0.00E+00</P>

<P CLASS="Computer">

<A NAME="pgfId=108850">

 </A>

DQBDVGB     -7.51E-16</P>

<P CLASS="Computer">

<A NAME="pgfId=108851">

 </A>

DQBDVDB      0.00E+00</P>

<P CLASS="ComputerLast">

<A NAME="pgfId=108852">

 </A>

DQBDVSB     -2.72E-15</P>

<P CLASS="Body">

<A NAME="pgfId=108905">

 </A>

From these derivatives we may compute six <SPAN CLASS="Definition">

nonreciprocal capacitances</SPAN>

<A NAME="marker=108960">

 </A>

:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=128311">

 </A>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

GB</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=128313">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=128315">

 </A>

&#8706;<SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

/&#8706;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GB</SUB>

 + &#8706;<SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

/&#8706;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DB</SUB>

 + &#8706;<SPAN CLASS="EquationVariables">

Q</SPAN>

<SUB CLASS="SubscriptVariable">

G</SUB>

/&#8706;<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

SB</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=128317">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CL

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -