⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch15.9.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
<A NAME="pgfId=205389">

 </A>

1/(2f)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205391">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205393">

 </A>

d<SPAN CLASS="EquationVariables">

V</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205395">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205397">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205399">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205401">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=205403">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205477">

 </A>

<SPAN CLASS="EquationVariables">

P</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205479">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205493">

 </A>

<SPAN CLASS="EquationVariables">

f</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205405">

 </A>

<SPAN CLASS="BigMath">

&Uacute;</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205407">

 </A>

<SPAN CLASS="EquationVariables">

CV</SPAN>

 </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205409">

 </A>

&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205411">

 </A>

d<SPAN CLASS="EquationVariables">

t</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205413">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205415">

 </A>

0.5 <SPAN CLASS="EquationVariables">

fCV</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205417">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=205419">

 </A>

(15.24)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205481">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205483">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205495">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205421">

 </A>

0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205423">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205425">

 </A>

d<SPAN CLASS="EquationVariables">

t</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205427">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205429">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205431">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205433">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=205435">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="Exercise">

<A NAME="pgfId=161608">

 </A>

During the second half-period of the input signal the <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor is off, so that there can be no power dissipation in the power supply. The power dissipation that occurs in the <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor must come from the stored energy in the capacitor&#8212;which is accounted for in the equation. In both cases the total power dissipation should be 1/2(<SPAN CLASS="EquationVariables">

fCV</SPAN>

<SUP CLASS="Superscript">

2</SUP>

), not (<SPAN CLASS="EquationVariables">

fCV</SPAN>

<SUP CLASS="Superscript">

2</SUP>

) as we have stated in Eq. <A HREF="CH15.5.htm#42545" CLASS="XRef">

15.4</A>

. Point out the errors in both of these arguments. (If you are interested in situations in which these equations do hold, you can search for the term <A NAME="marker=161613">

 </A>

adiabatic logic.)</P>

<P CLASS="ExerciseHead">

<A NAME="pgfId=161622">

 </A>

15.17&nbsp;<A NAME="27714">

 </A>

(Short-circuit power dissipation, 30  min.) Prove Eq. <A HREF="CH15.5.htm#23327" CLASS="XRef">

15.5</A>

 as follows: The input to a CMOS inverter is a linear ramp with rise time <SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

rf</SUB>

. Calculate the <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor current as a function of the input voltage, <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="Subscript">

in</SUB>

, assuming the <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor turns on when <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="Subscript">

in</SUB>

 = <SPAN CLASS="EquationNumber">

V</SPAN>

<SUB CLASS="Subscript">

t</SUB>

<SPAN CLASS="EquationVariables">

n</SPAN>

 and the current reaches a maximum when <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="Subscript">

in</SUB>

 = <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DD </SUB>

/ 2 at <SPAN CLASS="EquationVariables">

t</SPAN>

 = <SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

rf</SUB>

 / 2.</P>

<P CLASS="Exercise">

<A NAME="pgfId=161628">

 </A>

The transistor current is given by Eq.&nbsp;2.9. Assume <SPAN CLASS="Symbol">

b</SPAN>

 = (<SPAN CLASS="EquationNumber">

W/L</SPAN>

)<SPAN CLASS="Symbol">

m</SPAN>

<SPAN CLASS="EquationNumber">

Cox</SPAN>

 is the same for both <SPAN CLASS="EmphasisPrefix">

p</SPAN>

- and <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistors, the magnitude of the threshold voltages | V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 | are assumed equal for both transistor types, and <SPAN CLASS="Symbol">

t</SPAN>

 is the rise time and fall time (assumed equal) of the input signal.</P>

<P CLASS="Exercise">

<A NAME="pgfId=161636">

 </A>

Show that for a CMOS inverter (Eq. <A HREF="CH15.5.htm#23327" CLASS="XRef">

15.5</A>

):  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205503">

 </A>

<SPAN CLASS="EquationVariables">

P</SPAN>

<SUB CLASS="Subscript">

2</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205505">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205507">

 </A>

(1/12)<SPAN CLASS="Symbol">

b </SPAN>

<SPAN CLASS="EquationVariables">

f t</SPAN>

<SUB CLASS="SubscriptVariable">

rf</SUB>

<SPAN CLASS="EquationVariables">

(V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

 &#8211; 2 V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

)<SUP CLASS="Superscript">

3</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205509">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=205511">

 </A>

(15.25)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Exercise">

<A NAME="pgfId=161641">

 </A>

where <SPAN CLASS="Symbol">

b</SPAN>

 = (<SPAN CLASS="EquationNumber">

W/L</SPAN>

)<SPAN CLASS="Symbol">

m</SPAN>

<SPAN CLASS="EquationNumber">

Cox</SPAN>

 is the same for both <SPAN CLASS="EmphasisPrefix">

p</SPAN>

- and <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistors, the magnitude of the threshold voltages | V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 | are assumed equal for both transistors, and <SPAN CLASS="Symbol">

t</SPAN>

 is the rise time and fall time (assumed equal) of the input signal [<A NAME="Veendrick, 1984">

 </A>

Veendrick, 1984].</P>

<P CLASS="ExerciseHead">

<A NAME="pgfId=111266">

 </A>

15.18&nbsp;(Connectivity matrix, 10  min.)&nbsp;Find the connectivity matrix for the ATM Connection Simulator shown in <A HREF="CH15.6.htm#11762" CLASS="XRef">

Figure&nbsp;15.5</A>

. Use the following scheme to number the blocks and ordering of the matrix rows and columns: 1 = Personal Computer, 2 = Intel 80186, 3 = UTOPIA receiver, 4 = UTOPIA transmitter, 5 = Header remapper and screener, 6 = Remapper SRAM, . . . 15 = Random-number and bit error rate generator, 16 = Random-variable generator. All buses are labeled with their width except for two single connections (the arrows).</P>

<P CLASS="ExerciseHead">

<A NAME="pgfId=2556">

 </A>

15.19&nbsp;(K&#8211;L algorithm, 15  min.)</P>

<UL>

<LI CLASS="ExercisePartFirst">

<A NAME="pgfId=16105">

 </A>

a.&nbsp;Draw the network graph for the following connectivity matrix:  </LI>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205533">

 </A>

<SPAN CLASS="EquationVariables">

</SPAN>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205535">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205537">

 </A>

0 0 0 0 0 0 1 0 0 0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205539">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=205541">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205553">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205555">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205557">

 </A>

0 0 0 0 0 1 0 1 0 0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205559">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=205561">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205563">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205565">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205567">

 </A>

0 0 0 1 0 0 0 1 0 0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205569">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=205571">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=205573">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=205575">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205577">

 </A>

0 0 1 0 1 0 0 0 1 0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=205579">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=205581">

 </A>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -