📄 ch15.9.htm
字号:
<A NAME="pgfId=205389">
</A>
1/(2f)</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205391">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205393">
</A>
d<SPAN CLASS="EquationVariables">
V</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205395">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205397">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205399">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205401">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=205403">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205477">
</A>
<SPAN CLASS="EquationVariables">
P</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205479">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205493">
</A>
<SPAN CLASS="EquationVariables">
f</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205405">
</A>
<SPAN CLASS="BigMath">
Ú</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205407">
</A>
<SPAN CLASS="EquationVariables">
CV</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205409">
</A>
––</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205411">
</A>
d<SPAN CLASS="EquationVariables">
t</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205413">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205415">
</A>
0.5 <SPAN CLASS="EquationVariables">
fCV</SPAN>
<SUB CLASS="SubscriptVariable">
DD</SUB>
<SUP CLASS="Superscript">
2</SUP>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205417">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=205419">
</A>
(15.24)</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205481">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205483">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205495">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205421">
</A>
0</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205423">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205425">
</A>
d<SPAN CLASS="EquationVariables">
t</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205427">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205429">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205431">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205433">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=205435">
</A>
</P>
</TD>
</TR>
</TABLE>
<P CLASS="Exercise">
<A NAME="pgfId=161608">
</A>
During the second half-period of the input signal the <SPAN CLASS="EmphasisPrefix">
p</SPAN>
-channel transistor is off, so that there can be no power dissipation in the power supply. The power dissipation that occurs in the <SPAN CLASS="EmphasisPrefix">
n</SPAN>
-channel transistor must come from the stored energy in the capacitor—which is accounted for in the equation. In both cases the total power dissipation should be 1/2(<SPAN CLASS="EquationVariables">
fCV</SPAN>
<SUP CLASS="Superscript">
2</SUP>
), not (<SPAN CLASS="EquationVariables">
fCV</SPAN>
<SUP CLASS="Superscript">
2</SUP>
) as we have stated in Eq. <A HREF="CH15.5.htm#42545" CLASS="XRef">
15.4</A>
. Point out the errors in both of these arguments. (If you are interested in situations in which these equations do hold, you can search for the term <A NAME="marker=161613">
</A>
adiabatic logic.)</P>
<P CLASS="ExerciseHead">
<A NAME="pgfId=161622">
</A>
15.17 <A NAME="27714">
</A>
(Short-circuit power dissipation, 30 min.) Prove Eq. <A HREF="CH15.5.htm#23327" CLASS="XRef">
15.5</A>
as follows: The input to a CMOS inverter is a linear ramp with rise time <SPAN CLASS="EquationVariables">
t</SPAN>
<SUB CLASS="SubscriptVariable">
rf</SUB>
. Calculate the <SPAN CLASS="EmphasisPrefix">
n</SPAN>
-channel transistor current as a function of the input voltage, <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="Subscript">
in</SUB>
, assuming the <SPAN CLASS="EmphasisPrefix">
n</SPAN>
-channel transistor turns on when <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="Subscript">
in</SUB>
= <SPAN CLASS="EquationNumber">
V</SPAN>
<SUB CLASS="Subscript">
t</SUB>
<SPAN CLASS="EquationVariables">
n</SPAN>
and the current reaches a maximum when <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="Subscript">
in</SUB>
= <SPAN CLASS="EquationVariables">
V</SPAN>
<SUB CLASS="SubscriptVariable">
DD </SUB>
/ 2 at <SPAN CLASS="EquationVariables">
t</SPAN>
= <SPAN CLASS="EquationVariables">
t</SPAN>
<SUB CLASS="SubscriptVariable">
rf</SUB>
/ 2.</P>
<P CLASS="Exercise">
<A NAME="pgfId=161628">
</A>
The transistor current is given by Eq. 2.9. Assume <SPAN CLASS="Symbol">
b</SPAN>
= (<SPAN CLASS="EquationNumber">
W/L</SPAN>
)<SPAN CLASS="Symbol">
m</SPAN>
<SPAN CLASS="EquationNumber">
Cox</SPAN>
is the same for both <SPAN CLASS="EmphasisPrefix">
p</SPAN>
- and <SPAN CLASS="EmphasisPrefix">
n</SPAN>
-channel transistors, the magnitude of the threshold voltages | V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
| are assumed equal for both transistor types, and <SPAN CLASS="Symbol">
t</SPAN>
is the rise time and fall time (assumed equal) of the input signal.</P>
<P CLASS="Exercise">
<A NAME="pgfId=161636">
</A>
Show that for a CMOS inverter (Eq. <A HREF="CH15.5.htm#23327" CLASS="XRef">
15.5</A>
): </P>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205503">
</A>
<SPAN CLASS="EquationVariables">
P</SPAN>
<SUB CLASS="Subscript">
2</SUB>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205505">
</A>
=</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205507">
</A>
(1/12)<SPAN CLASS="Symbol">
b </SPAN>
<SPAN CLASS="EquationVariables">
f t</SPAN>
<SUB CLASS="SubscriptVariable">
rf</SUB>
<SPAN CLASS="EquationVariables">
(V</SPAN>
<SUB CLASS="SubscriptVariable">
DD</SUB>
– 2 V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
)<SUP CLASS="Superscript">
3</SUP>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205509">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnNumber">
<A NAME="pgfId=205511">
</A>
(15.25)</P>
</TD>
</TR>
</TABLE>
<P CLASS="Exercise">
<A NAME="pgfId=161641">
</A>
where <SPAN CLASS="Symbol">
b</SPAN>
= (<SPAN CLASS="EquationNumber">
W/L</SPAN>
)<SPAN CLASS="Symbol">
m</SPAN>
<SPAN CLASS="EquationNumber">
Cox</SPAN>
is the same for both <SPAN CLASS="EmphasisPrefix">
p</SPAN>
- and <SPAN CLASS="EmphasisPrefix">
n</SPAN>
-channel transistors, the magnitude of the threshold voltages | V<SUB CLASS="Subscript">
t</SUB>
<SUB CLASS="SubscriptVariable">
n</SUB>
| are assumed equal for both transistors, and <SPAN CLASS="Symbol">
t</SPAN>
is the rise time and fall time (assumed equal) of the input signal [<A NAME="Veendrick, 1984">
</A>
Veendrick, 1984].</P>
<P CLASS="ExerciseHead">
<A NAME="pgfId=111266">
</A>
15.18 (Connectivity matrix, 10 min.) Find the connectivity matrix for the ATM Connection Simulator shown in <A HREF="CH15.6.htm#11762" CLASS="XRef">
Figure 15.5</A>
. Use the following scheme to number the blocks and ordering of the matrix rows and columns: 1 = Personal Computer, 2 = Intel 80186, 3 = UTOPIA receiver, 4 = UTOPIA transmitter, 5 = Header remapper and screener, 6 = Remapper SRAM, . . . 15 = Random-number and bit error rate generator, 16 = Random-variable generator. All buses are labeled with their width except for two single connections (the arrows).</P>
<P CLASS="ExerciseHead">
<A NAME="pgfId=2556">
</A>
15.19 (K–L algorithm, 15 min.)</P>
<UL>
<LI CLASS="ExercisePartFirst">
<A NAME="pgfId=16105">
</A>
a. Draw the network graph for the following connectivity matrix: </LI>
<TABLE>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205533">
</A>
<SPAN CLASS="EquationVariables">
</SPAN>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205535">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205537">
</A>
0 0 0 0 0 0 1 0 0 0</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205539">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=205541">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205553">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205555">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205557">
</A>
0 0 0 0 0 1 0 1 0 0</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205559">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=205561">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205563">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205565">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205567">
</A>
0 0 0 1 0 0 0 1 0 0</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205569">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=205571">
</A>
</P>
</TD>
</TR>
<TR>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnRight">
<A NAME="pgfId=205573">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnCenter">
<A NAME="pgfId=205575">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205577">
</A>
0 0 1 0 1 0 0 0 1 0</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqnLeft">
<A NAME="pgfId=205579">
</A>
</P>
</TD>
<TD ROWSPAN="1" COLSPAN="1">
<P CLASS="TableEqn">
<A NAME="pgfId=205581">
</A>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -