⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch15.5.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 4 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML EXPERIMENTAL 970324//EN">

<HTML>

<HEAD>

<META NAME="GENERATOR" CONTENT="Adobe FrameMaker 5.5/HTML Export Filter">



<TITLE> 15.5&nbsp;Power Dissipation</TITLE></HEAD><!--#include file="top.html"--><!--#include file="header.html"-->



<DIV>

<P>[&nbsp;<A HREF="CH15.htm">Chapter&nbsp;start</A>&nbsp;]&nbsp;[&nbsp;<A HREF="CH15.4.htm">Previous&nbsp;page</A>&nbsp;]&nbsp;[&nbsp;<A HREF="CH15.6.htm">Next&nbsp;page</A>&nbsp;]</P><!--#include file="AmazonAsic.html"--><HR></DIV>

<H1 CLASS="Heading1">

<A NAME="pgfId=161221">

 </A>

15.5&nbsp;<A NAME="36006">

 </A>

Power Dissipation</H1>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=161222">

 </A>

Power dissipation in CMOS logic arises from the following sources:</P>

<UL>

<LI CLASS="BulletFirst">

<A NAME="pgfId=161225">

 </A>

<A NAME="marker=161223">

 </A>

Dynamic power dissipation due to <A NAME="marker=161224">

 </A>

switching current from charging and discharging parasitic capacitance.</LI>

<LI CLASS="BulletList">

<A NAME="pgfId=161227">

 </A>

Dynamic power dissipation due to <A NAME="marker=161226">

 </A>

short-circuit current when both <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel and <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistors are momentarily on at the same time.</LI>

<LI CLASS="BulletLast">

<A NAME="pgfId=161231">

 </A>

<A NAME="marker=161228">

 </A>

Static power dissipation due to <A NAME="marker=161229">

 </A>

leakage current and <A NAME="marker=161230">

 </A>

subthreshold current. </LI>

</UL>

<DIV>

<H2 CLASS="Heading2">

<A NAME="pgfId=161232">

 </A>

15.5.1&nbsp;Switching Current</H2>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=161233">

 </A>

When the <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor in an inverter is charging a capacitance, <SPAN CLASS="EquationVariables">

C</SPAN>

, at a frequency, <SPAN CLASS="EquationVariables">

f</SPAN>

, the current through the transistor is <SPAN CLASS="EquationVariables">

C</SPAN>

(d<SPAN CLASS="EquationVariables">

V</SPAN>

/d<SPAN CLASS="EquationVariables">

t</SPAN>

). The power dissipation is thus <SPAN CLASS="EquationVariables">

CV</SPAN>

(d<SPAN CLASS="EquationVariables">

V</SPAN>

/d<SPAN CLASS="EquationVariables">

t</SPAN>

) for one-half the period of the input, <SPAN CLASS="EquationVariables">

t</SPAN>

 = 1/(2 <SPAN CLASS="EquationVariables">

f </SPAN>

). The power dissipated in the <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor is thus  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201888">

 </A>

1/(2f)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201890">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201892">

 </A>

d<SPAN CLASS="EquationVariables">

V</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201894">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201896">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201898">

 </A>

<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201900">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201902">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201904">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=201906">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201908">

 </A>

<SPAN CLASS="BigMath">

&Uacute;</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201910">

 </A>

<SPAN CLASS="EquationVariables">

CV</SPAN>

 </P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201912">

 </A>

&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201914">

 </A>

d<SPAN CLASS="EquationVariables">

t</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201916">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201918">

 </A>

<SPAN CLASS="BigMath">

&Uacute;</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201920">

 </A>

<SPAN CLASS="EquationVariables">

CV</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201922">

 </A>

d<SPAN CLASS="EquationVariables">

V</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201924">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=201926">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201928">

 </A>

0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201930">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201932">

 </A>

d<SPAN CLASS="EquationVariables">

t</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201934">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201936">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201938">

 </A>

0</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201940">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201942">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201944">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=201946">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201948">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201950">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201952">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201954">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201956">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201958">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201960">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201962">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201964">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=201966">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201968">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=201970">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201972">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201974">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=201976">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="4">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=201978">

 </A>

0.5 <SPAN CLASS="EquationVariables">

CV</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=201986">

 </A>

(15.3)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=161238">

 </A>

When the <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor discharges the capacitor, the power dissipation is equal, making the total power dissipation  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=202135">

 </A>

<SPAN CLASS="EquationVariables">

P</SPAN>

<SUB CLASS="Subscript">

1</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=202137">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=202139">

 </A>

<SPAN CLASS="EquationVariables">

fCV</SPAN>

<SUP CLASS="Superscript">

2</SUP>

<SUB CLASS="SubscriptVariable">

DD</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=202141">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=202143">

 </A>

<A NAME="42545">

 </A>

(15.4)</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=161247">

 </A>

Most of the power dissipation in a CMOS ASIC arises from this source&#8212;the switching current. The best way to reduce power is to reduce <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

 (because it appears as a squared term in Eq.&nbsp;<A HREF="CH15.6.htm#16959" CLASS="XRef">

15.4</A>

), and to reduce <SPAN CLASS="EquationVariables">

C</SPAN>

, the amount of capacitance we have to switch. A rough estimate is that 20 percent of the nodes switch (or <A NAME="marker=161251">

 </A>

toggle) in a circuit per clock cycle. To determine more accurately the power dissipation due to switching, we need to find out how many nodes toggle during typical circuit operation using a dynamic logic simulator. This requires input vectors that correspond to typical operation, which can be difficult to produce. Using a digital simulator also will not take into account the effect of glitches, which can be significant. Power simulators are usually a hybrid between SPICE transistor-level simulators and digital event-driven simulators [<A NAME="Najm, 1994">

 </A>

Najm, 1994].</P>

</DIV>

<DIV>

<H2 CLASS="Heading2">

<A NAME="pgfId=161259">

 </A>

15.5.2&nbsp;Short-Circuit Current</H2>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=192282">

 </A>

The short-circuit current or <A NAME="marker=192281">

 </A>

crowbar current can be particularly important for output drivers and large clock buffers. For a CMOS inverter (see Problem <A HREF="CH15.9.htm#27714" CLASS="XRef">

15.17</A>

) the power dissipation due to the crowbar current is  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=202149">

 </A>

<SPAN CLASS="EquationVariables">

P</SPAN>

<SUB CLASS="Subscript">

2</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=202151">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=202153">

 </A>

(1/12)<SPAN CLASS="Symbol">

b </SPAN>

<SPAN CLASS="EquationVariables">

f t</SPAN>

<SUB CLASS="SubscriptVariable">

rf</SUB>

<SPAN CLASS="EquationVariables">

(V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

 &#8211; 2 V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

)<SUP CLASS="Superscript">

3</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=202155">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=202157">

 </A>

<A NAME="23327">

 </A>

(15.5)</P>

</TD>

</TR>

</TABLE>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=192380">

 </A>

where we assume the following: We ratio the <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel and <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor sizes so that <SPAN CLASS="Symbol">

b</SPAN>

 = (<SPAN CLASS="EquationNumber">

W/L</SPAN>

)<SPAN CLASS="Symbol">

m</SPAN>

<SPAN CLASS="EquationNumber">

C</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

 is the same for both <SPAN CLASS="EmphasisPrefix">

p</SPAN>

- and <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistors, the magnitude of the threshold voltages V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

 are assumed equal for both transistor types, and <SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

rf </SUB>

is the rise and fall time (assumed equal) of the input signal [<A NAME="[Veendrick, 1984]">

 </A>

Veendrick, 1984]. For example, consider an output buffer that is capable of sinking 12 mA at an output voltage of 0.5 V. From Eq.&nbsp;2.9 we can derive the transistor gain factor that we need as follows:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=202200">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=202202">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=202204">

 </A>

<SPAN CLASS="EquationVariables">

I</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=202294">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=202206">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=202208">

 </A>

<SPAN CLASS="Symbol">

b</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=202210">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=202212">

 </A>

&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=202296">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=202214">

 </A>

(15.6)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=202216">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=202218">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=202220">

 </A>

[(<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 &#8211; V<SUB CLASS="Subscript">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -