⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch16.6.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
<P CLASS="TableEqnRight">

<A NAME="pgfId=113246">

 </A>

<SPAN CLASS="EquationVariables">

i</SPAN>

 = 1</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113248">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113250">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113252">

 </A>

<SPAN CLASS="EquationVariables">

i</SPAN>

 = 1</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113254">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113173">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=113175">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113181">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113183">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113185">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113187">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113189">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113191">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=113193">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113199">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113201">

 </A>

...</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113203">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113205">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113207">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113209">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=113211">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113260">

 </A>

<SUB CLASS="SubscriptVariable">

n</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113262">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113264">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113266">

 </A>

<SUB CLASS="SubscriptVariable">

n</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113268">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=112983">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=112985">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113270">

 </A>

<SPAN CLASS="BigMath">

S</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113272">

 </A>

<SPAN CLASS="EquationVariables">

x</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

<SUP CLASS="Superscript">

n</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113274">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113276">

 </A>

<SPAN CLASS="BigMath">

S</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113278">

 </A>

<SPAN CLASS="EquationVariables">

p</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

<SUP CLASS="Superscript">

n</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113010">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=113012">

 </A>

(16.22)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113280">

 </A>

<SPAN CLASS="EquationVariables">

i</SPAN>

 = 1</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113282">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113284">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113286">

 </A>

<SPAN CLASS="EquationVariables">

i</SPAN>

 = 1</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113288">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113024">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=113026">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="ExerciseNoIndent">

<A NAME="pgfId=8364">

 </A>

(<SPAN CLASS="Emphasis">

Hint:</SPAN>

 Consider the polynomial (<SPAN CLASS="Emphasis">

x</SPAN>

 + <SPAN CLASS="EquationVariables">

x</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

)<SUP CLASS="SuperscriptVariable">

n</SUP>

. In our simplification to the problem, we chose to impose only the second equation of these constraints.)</P>

<P CLASS="ExerciseHead">

<A NAME="pgfId=10046">

 </A>

16.4&nbsp;<A NAME="37002">

 </A>

(*Eigenvalue placement, 30 min.) You will need MatLab, Mathematica, or a similar mathematical calculus program for this problem. </P>

<UL>

<LI CLASS="ExercisePartFirst">

<A NAME="pgfId=11189">

 </A>

a.&nbsp;Find the eigenvalues and eigenvectors for the disconnection matrix corresponding to the following connection matrix:</LI>

</UL>

<P CLASS="ComputerFirst">

<A NAME="pgfId=10946">

 </A>

<SPAN CLASS="BodyComputer">

C=</SPAN>

</P>

<P CLASS="Computer">

<A NAME="pgfId=11460">

 </A>

<SPAN CLASS="BodyComputer">

[	0 1 1 0 0 0 1 0 0;</SPAN>

</P>

<P CLASS="Computer">

<A NAME="pgfId=10947">

 </A>

<SPAN CLASS="BodyComputer">

	1 0 0 0 0 0 0 0 0;</SPAN>

</P>

<P CLASS="Computer">

<A NAME="pgfId=10948">

 </A>

<SPAN CLASS="BodyComputer">

	1 0 0 1 0 0 0 1 0;</SPAN>

</P>

<P CLASS="Computer">

<A NAME="pgfId=10949">

 </A>

<SPAN CLASS="BodyComputer">

	0 0 1 0 0 1 0 0 0;</SPAN>

</P>

<P CLASS="Computer">

<A NAME="pgfId=10950">

 </A>

<SPAN CLASS="BodyComputer">

	0 0 0 0 0 1 0 0 1;</SPAN>

</P>

<P CLASS="Computer">

<A NAME="pgfId=10951">

 </A>

<SPAN CLASS="BodyComputer">

	0 0 0 1 1 0 1 0 0;</SPAN>

</P>

<P CLASS="Computer">

<A NAME="pgfId=10952">

 </A>

<SPAN CLASS="BodyComputer">

	1 0 0 0 0 1 0 0 0;</SPAN>

</P>

<P CLASS="Computer">

<A NAME="pgfId=10953">

 </A>

<SPAN CLASS="BodyComputer">

	0 0 1 0 0 0 0 0 1;</SPAN>

</P>

<P CLASS="ComputerLast">

<A NAME="pgfId=10954">

 </A>

	<SPAN CLASS="BodyComputer">

0 0 0 0 1 0 0 1 0;]</SPAN>

</P>

<P CLASS="ExerciseNoIndent">

<A NAME="pgfId=11455">

 </A>

(<SPAN CLASS="Emphasis">

Hint: </SPAN>

Check your answer. The smallest, nonzero, eigenvalue should be 0.5045.)</P>

<UL>

<LI CLASS="ExercisePart">

<A NAME="pgfId=11620">

 </A>

b.&nbsp;Use your results to place the logic cells. Plot the placement and show the connections between logic cells (this is easy to do using an X-Y plot in an Excel spreadsheet).</LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=11185">

 </A>

c.&nbsp;Check that the following equation holds:  </LI>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113320">

 </A>

<SPAN CLASS="Symbol">

l</SPAN>

<SPAN CLASS="Vector">

 </SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113322">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113324">

 </A>

<SPAN CLASS="EquationVariables">

g</SPAN>

/P .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113326">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=113328">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

</UL>

<P CLASS="ExerciseHead">

<A NAME="pgfId=5674">

 </A>

16.5&nbsp;<A NAME="17928">

 </A>

(Die size, 10 min.) Suppose the minimum spacing between pad centers is <SPAN CLASS="EquationVariables">

W</SPAN>

 mil (1 mil = 10<SUP CLASS="Superscript">

&#8211;3</SUP>

 inch), there are <SPAN CLASS="EquationVariables">

N</SPAN>

&nbsp;I/O pads on a chip, and the die area (assume a square die) is <SPAN CLASS="EquationVariables">

A</SPAN>

 mil<SUP CLASS="Superscript">

2</SUP>

: </P>

<UL>

<LI CLASS="ExercisePartFirst">

<A NAME="pgfId=94570">

 </A>

a.&nbsp;Derive a relationship between <SPAN CLASS="EquationVariables">

W</SPAN>

, <SPAN CLASS="EquationVariables">

N</SPAN>

, and <SPAN CLASS="EquationVariables">

A</SPAN>

 that corresponds to the point at which the die changes from being pad-limited to core-limited. </LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=94571">

 </A>

b.&nbsp;Plot this relationship with <SPAN CLASS="EquationVariables">

N</SPAN>

 (ranging from 50 to 500 pads) on the <SPAN CLASS="Emphasis">

x</SPAN>

-axis, <SPAN CLASS="EquationVariables">

A</SPAN>

 on the <SPAN CLASS="Emphasis">

y</SPAN>

-axis (for dies ranging in size from 1 mm to 20 mm on a side), and <SPAN CLASS="EquationVariables">

W</SPAN>

 as a parameter (for <SPAN CLASS="EquationVariables">

W</SPAN>

 = 1, 2, 3, and 4 mil).</LI>

</UL>

<P CLASS="ExerciseHead">

<A NAME="pgfId=5713">

 </A>

16.6&nbsp;<A NAME="16197">

 </A>

(Power buses, 20 min.) Assume aluminum metal interconnect has a resistance of about 30 m<SPAN CLASS="Symbol">

W</SPAN>

/square (a low value). Consider a power ring for the I/O pads. Suppose you have a high-power chip that dissipates 5 W at <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

 = 5 V, and assume that half of the supply current (0.5 A) is due to I/O. Suppose the square die is <SPAN CLASS="EquationVariables">

L</SPAN>

 mil on a side, and that the I/O current is equally distributed among the <SPAN CLASS="EquationVariables">

N</SPAN>

 VDD pads that are on the chip. In the worst case, you want no more than 100 mV drop between any VDD pad and the I/O circuits drawing power (notice that there will be an equal drop on the VSS side; just consider the VDD drop). </P>

<UL>

<LI CLASS="ExercisePartFirst">

<A NAME="pgfId=5746">

 </A>

a.&nbsp;Model the power distribution as a ring of <SPAN CLASS="EquationVariables">

N</SPAN>

 equally spaced pads. Each pad is connected by a resistor equal to the aluminum VDD power-bus resistance between two pads. Assume the I/O circuits associated with each pad can be considered to connect to just one point on the resistors between each pad. If the resistance between each pad is <SPAN CLASS="EquationVariables">

R</SPAN>

, what is the worst-case resistance between the I/O circuits and the supply? </LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=5747">

 </A>

b.&nbsp;Plot a graph showing <SPAN CLASS="EquationVariables">

L</SPAN>

 (in mil) on the <SPAN CLASS="Emphasis">

x</SPAN>

-axis, <SPAN CLASS="EquationVariables">

W</SPAN>

 (the required power-bus width in microns) on the <SPAN CLASS="Emphasis">

y</SPAN>

-axis, with <SPAN CLASS="EquationVariables">

N</SPAN>

 as a parameter (with <SPAN CLASS="EquationVariables">

N</SPAN>

 = 1,&nbsp;2,&nbsp;5,&nbsp;10).</LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=5742">

 </A>

c.&nbsp;Comment on your results.</LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=52601">

 </A>

d.&nbsp;An upper limit on current density for aluminum metallization is about 50 kAcm<SUP CLASS="Superscript">

&#8211;2</SUP>

; at current densities higher than this, failure due to electromigration (which we shall cover in Section 17.3.2, &#8220;Power Routing&#8221;) is a problem. Assume the metallization is 0.5 <SPAN CLASS="Symbol">

m</SPAN>

m thick. Calculate the current density in the VDD power bus for this chip in terms of the power-bus width and the number of pads. Comment on your answer.</LI>

</UL>

<P CLASS="ExerciseHead">

<A NAME="pgfId=7253">

 </A>

16.7&nbsp;<A NAME="29063">

 </A>

(Interconnect-length approximation, 10 min.) <A HREF="CH16.2.htm#32290" CLASS="XRef">

Figure&nbsp;16.22</A>

 shows the correlation between actual interconnect length and two approximations. Use this graph to derive a correction function (together with an estimation of the error) for the complete-graph measure and the half-perimeter measure.</P>

<P CLASS="ExerciseHead">

<A NAME="pgfId=58632">

 </A>

16.8&nbsp;(Half-perimeter measure, 10 min.)&nbsp;Draw a tree on a rectangular grid for which the MRST is equal to the half-perimeter measure. Draw a tree on a rectangular grid for which the MRST is twice the half-perimeter measure.</P>

<P CLASS="ExerciseHead">

<A NAME="pgfId=86793">

 </A>

16.9&nbsp;<A NAME="32610">

 </A>

(***Min-cut, 120 min.)&nbsp;Many floorplanning and placement tools use min-cut methods and allow you to alter the type and sequence of <A NAME="marker=86794">

 </A>

bisection cuts. Research and describe the difference between:&nbsp;<A NAME="marker=86795">

 </A>

quadrature min-cut placement,&nbsp;<A NAME="marker=86796">

 </A>

bisection min-cut placement, and <A NAME="marker=86797">

 </A>

slice/bisection min-cut placement.</P>

<P CLASS="ExerciseHead">

<A NAME="pgfId=100607">

 </A>

16.10&nbsp;(***Terminal propagation, 120 min.)&nbsp;There is a problem with the min-cut algorithm in the way connectivity is measured. <A HREF="CH16.6.htm#25999" CLASS="XRef">

Figure&nbsp;16.33</A>

 shows a situation in which logic cells G and H are connected to other logic cells (A and F) outside the area R1 that is currently being partitioned. The min-cut algorithm ignores connections outside the area to be divided. Thus logic cells G and H may be placed in partition R3 rather than partition R2. Suggest solutions to this problem. <SPAN CLASS="Emphasis">

Hint:</SPAN>

 See <A NAME="Dunlop83">

 </A>

Dunlop [1983]; <A NAME="Hartoog86">

 </A>

Hartoog [1986]; or the Barnes&#8211;Hut galaxy model.</P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=100619">

 </A>

&nbsp;</P>

<DIV>

<IMG SRC="CH16-34.gif">

</DIV>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigureTitle">

<A NAME="pgfId=100626">

 </A>

FIGURE&nbsp;16.33&nbsp;<A NAME="25999">

 </A>

(For Problem <A HREF="CH16.6.htm#Dunlop83" CLASS="XRef">

16.10</A>

.) A problem with the min-cut algorithm is that it ignores connections to logic cells outside the area being partitioned. (a)&nbsp;We perform a vertical cut 1 producing the areas R<SUB CLASS="Subscript">

1</SUB>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -