⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch16.6.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45530">

 </A>

5.45</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45532">

 </A>

6.44</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45534">

 </A>

7.44</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45536">

 </A>

8.44</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45538">

 </A>

9.43</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45540">

 </A>

17.4</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45542">

 </A>

33.33</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45544">

 </A>

65.20</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45546">

 </A>

0.996</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=83063">

 </A>

	1.465</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45550">

 </A>

12 <SPAN CLASS="Symbol">

&#165;</SPAN>

 12</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45552">

 </A>

3.04</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45554">

 </A>

4.1</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45556">

 </A>

5.17</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45558">

 </A>

6.23</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45560">

 </A>

7.3</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45562">

 </A>

8.35</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45564">

 </A>

9.42</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45566">

 </A>

10.48</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45568">

 </A>

18.8</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45570">

 </A>

36.03</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45572">

 </A>

70.00</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableLast">

<A NAME="pgfId=45574">

 </A>

1.063</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=45576">

 </A>

	1.964</P>

</TD>

</TR>

</TABLE>

</UL>

<P CLASS="ExerciseHead">

<A NAME="pgfId=18652">

 </A>

16.2&nbsp;<A NAME="26895">

 </A>

(Trees, 20 min.) For the network graph shown in <A HREF="CH16.6.htm#22857" CLASS="XRef">

Figure&nbsp;16.32</A>

(f), draw the following trees and calculate their Manhattan lengths:</P>

<UL>

<LI CLASS="ExercisePartFirst">

<A NAME="pgfId=100456">

 </A>

a.&nbsp;The minimum Steiner tree.</LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=100458">

 </A>

b.&nbsp;The <A NAME="marker=100457">

 </A>

<SPAN CLASS="Definition">

chain connection</SPAN>

.</LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=100459">

 </A>

c.&nbsp;The minimum rectilinear Steiner tree.</LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=18643">

 </A>

d.&nbsp;The <SPAN CLASS="Definition">

minimum rectilinear spanning tree</SPAN>

<A NAME="marker=32077">

 </A>

 [<A NAME="Hwang76">

 </A>

Hwang, 1976].</LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=44220">

 </A>

e.&nbsp;The minimum single-trunk rectilinear Steiner tree (with a horizontal or vertical trunk).</LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=18646">

 </A>

f.&nbsp;The <SPAN CLASS="Definition">

minimum rectilinear chain connection</SPAN>

<A NAME="marker=32078">

 </A>

 (easy to compute).</LI>

<LI CLASS="ExercisePart">

<A NAME="pgfId=18647">

 </A>

g.&nbsp;The <SPAN CLASS="Definition">

minimum source-to-sink connection</SPAN>

<A NAME="marker=32079">

 </A>

.</LI>

</UL>

<P CLASS="Exercise">

<A NAME="pgfId=32043">

 </A>

	Calculate:</P>

<UL>

<LI CLASS="ExercisePart">

<A NAME="pgfId=18648">

 </A>

h.&nbsp;The complete-graph measure and the half-perimeter measure.</LI>

</UL>

<P CLASS="Exercise">

<A NAME="pgfId=36096">

 </A>

<A HREF="CH16.6.htm#22857" CLASS="XRef">

Figure&nbsp;16.32</A>

 parts (a&#8211;e) illustrate the definitions of these trees. There is no known solution to the minimum Steiner-tree problem for nets with more than five terminals.</P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=44237">

 </A>

&nbsp;</P>

<DIV>

<IMG SRC="CH16-33.gif">

</DIV>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigureTitle">

<A NAME="pgfId=44241">

 </A>

FIGURE&nbsp;16.32&nbsp;<A NAME="22857">

 </A>

 Tree routing. (a)&nbsp;The minimum rectilinear Steiner tree (MRST). (b)&nbsp;The minimum rectilinear spanning tree. (c)&nbsp;The minimum single-trunk rectilinear Steiner tree (1-MRST). (d)&nbsp;The minimum rectilinear chain connection. (e)&nbsp;The minimum source-to-sink connection. (f)&nbsp;Example net for Problem <A HREF="CH16.6.htm#26895" CLASS="XRef">

16.2</A>

.</P>

</TD>

</TR>

</TABLE>

<P CLASS="ExerciseHead">

<A NAME="pgfId=25673">

 </A>

16.3&nbsp;<A NAME="29983">

 </A>

(Eigenvalue placement constraints, 10 min. [<A NAME="Cheng84b">

 </A>

Cheng and Kuh, 1984]) Consider the one-dimensional placement problem with a vector list of valid positions for the logic cells <SPAN CLASS="Vector">

p</SPAN>

  = [<SPAN CLASS="EquationVariables">

 p</SPAN>

<SUB CLASS="SubscriptVariable">

i </SUB>

] and a vector list of <SPAN CLASS="Emphasis">

x</SPAN>

-coordinates for the logic cells <SPAN CLASS="Vector">

x</SPAN>

 = [<SPAN CLASS="EquationVariables">

x</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

]. </P>

<P CLASS="Exercise">

<A NAME="pgfId=94911">

 </A>

Show that for a valid placement <SPAN CLASS="Vector">

x</SPAN>

 (where the vector elements <SPAN CLASS="EquationVariables">

x</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

 are some permutation of the vector elements <SPAN CLASS="EquationVariables">

p</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

), the following equations hold:  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=112911">

 </A>

<SUB CLASS="SubscriptVariable">

n</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113036">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=112913">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113096">

 </A>

<SUB CLASS="SubscriptVariable">

n</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113076">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=112917">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=112919">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=112957">

 </A>

<SPAN CLASS="BigMath">

S</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113038">

 </A>

<SPAN CLASS="EquationVariables">

x</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=112959">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113098">

 </A>

<SPAN CLASS="BigMath">

S</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113078">

 </A>

<SPAN CLASS="EquationVariables">

p</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=112963">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=112965">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=112967">

 </A>

<SPAN CLASS="EquationVariables">

i</SPAN>

 = 1</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113040">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=112969">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113100">

 </A>

<SPAN CLASS="EquationVariables">

i</SPAN>

 = 1</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113080">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=112973">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=112975">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113106">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113108">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113110">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113112">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113114">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113116">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=113118">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113226">

 </A>

<SUB CLASS="SubscriptVariable">

n</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113228">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113230">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113232">

 </A>

<SUB CLASS="SubscriptVariable">

n</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113234">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113134">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=113136">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113236">

 </A>

<SPAN CLASS="BigMath">

S</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113238">

 </A>

<SPAN CLASS="EquationVariables">

x</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=113240">

 </A>

=</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnRight">

<A NAME="pgfId=113242">

 </A>

<SPAN CLASS="BigMath">

S</SPAN>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113244">

 </A>

<SPAN CLASS="EquationVariables">

p</SPAN>

<SUB CLASS="SubscriptVariable">

i</SUB>

<SUP CLASS="Superscript">

2</SUP>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnLeft">

<A NAME="pgfId=113155">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=113157">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -