⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch03.2.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 4 页
字号:
.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=1 VTO=0.65 DELTA=0.7<BR>

+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6 NSUB=1.4E+17 NFS=6E+11<BR>

+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-10 CGSO=3.0E-10 CGBO=4.0E-10<BR>

+ CJ=5.6E-04 MJ=0.56 CJSW=5E-11 MJSW=0.52 PB=1<BR>

m1  out1 in1 0 0 cmosn W=6U L=0.6U AS=7.2P AD=7.2P PS=8.4U PD=8.4U</P>

</TD>

</TR>

</TABLE>

<DIV>

<H3 CLASS="Heading2">

<A NAME="pgfId=185127">

 </A>

3.2.1&nbsp;Junction Capacitance</H3>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=185405">

 </A>

The junction capacitances, <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

BD</SUB>

 and <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

BS</SUB>

, consist of two parts: junction area and sidewall; both have different physical characteristics with parameters: <SPAN CLASS="BodyComputer">

CJ</SPAN>

 and <SPAN CLASS="BodyComputer">

MJ </SPAN>

for the junction, <SPAN CLASS="BodyComputer">

CJSW</SPAN>

 and <SPAN CLASS="BodyComputer">

MJSW</SPAN>

 for the sidewall, and <SPAN CLASS="BodyComputer">

PB</SPAN>

 is common. These capacitances depend on the voltage across the junction (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DB</SUB>

 and <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

SB</SUB>

). The calculations in Table&nbsp;<A HREF="#38143" CLASS="XRef">

3.1</A>

 assume both source and drain regions are 6<SPAN CLASS="Symbol">

 m</SPAN>

m<SPAN CLASS="Symbol">

 &#165; </SPAN>

1.2<SPAN CLASS="Symbol">

 m</SPAN>

m rectangles, so that A<SUB CLASS="Subscript">

D</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

A<SUB CLASS="Subscript">

S</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

7.2<SPAN CLASS="Symbol">

 </SPAN>

(<SPAN CLASS="Symbol">

m</SPAN>

m)<SUP CLASS="Superscript">

2</SUP>

, and the perimeters (excluding the 1.2<SPAN CLASS="Symbol">

 m</SPAN>

m channel edge) are P<SUB CLASS="Subscript">

D</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

P<SUB CLASS="Subscript">

S</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

6<SPAN CLASS="Symbol">

 </SPAN>

+<SPAN CLASS="Symbol">

 </SPAN>

1.2<SPAN CLASS="Symbol">

 </SPAN>

+<SPAN CLASS="Symbol">

 </SPAN>

1.2<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

8.4<SPAN CLASS="Symbol">

 m</SPAN>

m. We exclude the channel edge because the sidewalls facing the channel (corresponding to <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

BSJ</SUB>

<SUB CLASS="Subscript">

GATE</SUB>

 and <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

BDJ</SUB>

<SUB CLASS="Subscript">

GATE</SUB>

 in Figure&nbsp;<A HREF="#17045" CLASS="XRef">

3.4</A>

) are different from the sidewalls that face the field. There is no standard method to allow for this. It is a mistake to exclude the gate edge assuming it is accounted for in the rest of the model&#8212;it is not. A pessimistic simulation includes the channel edge in P<SUB CLASS="Subscript">

D</SUB>

 and P<SUB CLASS="Subscript">

S</SUB>

  (but a true worst-case analysis would use more accurate models and worst-case model parameters). In HSPICE there is a separate mechanism to account for the channel edge capacitance (using parameters <SPAN CLASS="BodyComputer">

ACM</SPAN>

<A NAME="marker=185457">

 </A>

<A NAME="marker=185458">

 </A>

 and <A NAME="marker=185417">

 </A>

<SPAN CLASS="BodyComputer">

CJGATE</SPAN>

). In Table&nbsp;<A HREF="#38143" CLASS="XRef">

3.1</A>

 we have neglected <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

J</SUB>

<SUB CLASS="Subscript">

GATE</SUB>

.</P>

<P CLASS="Body">

<A NAME="pgfId=185126">

 </A>

For the <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor <SPAN CLASS="BodyComputer">

m2</SPAN>

 (W<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

12<SPAN CLASS="Symbol">

 m</SPAN>

m and L<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

0.6<SPAN CLASS="Symbol">

 m</SPAN>

m) the source and drain regions are 12<SPAN CLASS="Symbol">

 m</SPAN>

m<SPAN CLASS="Symbol">

 &#165; </SPAN>

1.2<SPAN CLASS="Symbol">

 m</SPAN>

m rectangles, so that A<SUB CLASS="Subscript">

D</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

A<SUB CLASS="Subscript">

S</SUB>

<SPAN CLASS="Symbol">

 &#170; </SPAN>

14<SPAN CLASS="Symbol">

 </SPAN>

(<SPAN CLASS="Symbol">

m</SPAN>

m)<SUP CLASS="Superscript">

2</SUP>

, and the perimeters are P<SUB CLASS="Subscript">

D</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

P<SUB CLASS="Subscript">

S</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

12<SPAN CLASS="Symbol">

 </SPAN>

+<SPAN CLASS="Symbol">

 </SPAN>

1.2<SPAN CLASS="Symbol">

 </SPAN>

+<SPAN CLASS="Symbol">

 </SPAN>

1.2 <SPAN CLASS="Symbol">

&#170; </SPAN>

14<SPAN CLASS="Symbol">

 m</SPAN>

m (these parameters are rounded to two significant figures solely to simplify the figures and tables).</P>

<P CLASS="Body">

<A NAME="pgfId=187530">

 </A>

In passing, notice that a 1.2<SPAN CLASS="Symbol">

 m</SPAN>

m strip of diffusion in a 0.6<SPAN CLASS="Symbol">

 m</SPAN>

m process (<SPAN CLASS="Symbol">

l </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

0.3<SPAN CLASS="Symbol">

 m</SPAN>

m) is only 4 <SPAN CLASS="Symbol">

 l</SPAN>

 wide&#8212;wide enough to place a contact only with aggressive spacing rules. The conservative rules in Figure&nbsp;2.11 would require a diffusion width of at least 2<SPAN CLASS="Symbol">

 </SPAN>

(rule 6.4a)<SPAN CLASS="Symbol">

 </SPAN>

+<SPAN CLASS="Symbol">

 </SPAN>

2<SPAN CLASS="Symbol">

 </SPAN>

(rule 6.3a)<SPAN CLASS="Symbol">

 </SPAN>

+<SPAN CLASS="Symbol">

 </SPAN>

1.5<SPAN CLASS="Symbol">

 </SPAN>

(rule 6.2a)<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

5.5<SPAN CLASS="Symbol">

 l</SPAN>

.</P>

</DIV>

<DIV>

<H3 CLASS="Heading2">

<A NAME="pgfId=184782">

 </A>

3.2.2&nbsp;Overlap Capacitance</H3>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=185132">

 </A>

The overlap capacitance calculations for C<SUB CLASS="Subscript">

GSOV</SUB>

 and C<SUB CLASS="Subscript">

GDOV</SUB>

 in Table&nbsp;<A HREF="#38143" CLASS="XRef">

3.1</A>

 account for lateral diffusion (the amount the source and drain extend under the gate) using SPICE parameter <SPAN CLASS="BodyComputer">

LD</SPAN>

<SPAN CLASS="Symbol">

 </SPAN>

<SPAN CLASS="BodyComputer">

=</SPAN>

<SPAN CLASS="Symbol">

 </SPAN>

<SPAN CLASS="BodyComputer">

5E-08</SPAN>

 or L<SUB CLASS="Subscript">

D</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

0.05<SPAN CLASS="Symbol">

 m</SPAN>

m. Not all versions of SPICE use the equivalent parameter for width reduction, <SPAN CLASS="BodyComputer">

WD</SPAN>

 (assumed zero in Table&nbsp;<A HREF="#38143" CLASS="XRef">

3.1</A>

), in calculating C<SUB CLASS="Subscript">

GDOV</SUB>

 and not all versions subtract W<SUB CLASS="Subscript">

D</SUB>

 to form W<SUB CLASS="Subscript">

EFF</SUB>

. </P>

</DIV>

<DIV>

<H3 CLASS="Heading2">

<A NAME="pgfId=185133">

 </A>

3.2.3&nbsp;Gate Capacitance</H3>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=185134">

 </A>

The gate capacitance calculations in Table&nbsp;<A HREF="#38143" CLASS="XRef">

3.1</A>

 depend on the operating region. The gate&#8211;source capacitance <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

 varies from zero when the transistor is off to 0.5C<SUB CLASS="Subscript">

O</SUB>

 (0.5<SPAN CLASS="Symbol">

 &#165; </SPAN>

1.035<SPAN CLASS="Symbol">

 &#165; </SPAN>

10<SUP CLASS="Superscript">

&#8211;15</SUP>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

5.18<SPAN CLASS="Symbol">

 &#165; </SPAN>

10<SUP CLASS="Superscript">

&#8211;16</SUP>

<SPAN CLASS="Symbol">

 </SPAN>

F) in the linear region to (2/3)C<SUB CLASS="Subscript">

O</SUB>

 in the saturation region (6.9<SPAN CLASS="Symbol">

 &#165; </SPAN>

10<SUP CLASS="Superscript">

&#8211;16</SUP>

<SPAN CLASS="Symbol">

 </SPAN>

F). The gate&#8211;drain capacitance <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

GD</SUB>

 varies from zero (off) to 0.5C<SUB CLASS="Subscript">

O</SUB>

 (linear region) and back to zero (saturation region).</P>

<P CLASS="Body">

<A NAME="pgfId=185898">

 </A>

The gate&#8211;bulk capacitance <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

GB</SUB>

 may be viewed as two capacitors in series: the fixed gate-oxide capacitance, C<SUB CLASS="Subscript">

O</SUB>

 =<SPAN CLASS="Symbol">

 </SPAN>

W<SUB CLASS="Subscript">

EFF</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

L<SUB CLASS="Subscript">

EFF</SUB>

<SPAN CLASS="Symbol">

  e</SPAN>

<SUB CLASS="Subscript">

ox</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

/<SPAN CLASS="Symbol">

 </SPAN>

T<SUB CLASS="Subscript">

ox</SUB>

, and the variable depletion capacitance, <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

S</SUB>

 =<SPAN CLASS="Symbol">

 </SPAN>

W<SUB CLASS="Subscript">

EFF</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

L<SUB CLASS="Subscript">

EFF</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

 <SPAN CLASS="Symbol">

e</SPAN>

<SUB CLASS="Subscript">

Si</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

 /<SPAN CLASS="Symbol">

 </SPAN>

<SPAN CLASS="EquationVariables">

x</SPAN>

<SUB CLASS="SubscriptVariable">

d</SUB>

, formed by the depletion region that extends under the gate (with varying depth <SPAN CLASS="EquationVariables">

x</SPAN>

<SUB CLASS="SubscriptVariable">

d</SUB>

). As the transistor turns on the conducting channel appears and shields the bulk from the gate&#8212;and at this point <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

GB </SUB>

falls to zero. Even with <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

0<SPAN CLASS="Symbol">

 </SPAN>

V, the depletion width under the gate is finite and thus <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

GB</SUB>

<SPAN CLASS="Symbol">

 &#170; </SPAN>

4<SPAN CLASS="Symbol">

 &#165; </SPAN>

10<SUP CLASS="Superscript">

&#8211;15</SUP>

<SPAN CLASS="Symbol">

 </SPAN>

F is less than C<SUB CLASS="Subscript">

O</SUB>

<SPAN CLASS="Symbol">

 &#170; </SPAN>

10<SUP CLASS="Superscript">

&#8211;16</SUP>

<SPAN CLASS="Symbol">

 </SPAN>

F. In fact, since <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

GB</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

 <SPAN CLASS="Symbol">

&#170; </SPAN>

 0.5<SPAN CLASS="Symbol">

 </SPAN>

C<SUB CLASS="Subscript">

O</SUB>

, we can tell that at <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

0<SPAN CLASS="Symbol">

 </SPAN>

V, <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

S</SUB>

<SPAN CLASS="Symbol">

 &#170; </SPAN>

C<SUB CLASS="Subscript">

O</SUB>

.</P>

<P CLASS="Body">

<A NAME="pgfId=186453">

 </A>

Figure&nbsp;<A HREF="#16486" CLASS="XRef">

3.5</A>

 shows the variation of the parasitic capacitance values. </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=186463">

 </A>

<IMG SRC="CH03-10.gif" ALIGN="BASELINE">

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigureTitle">

<A NAME="pgfId=186466">

 </A>

FIGURE&nbsp;3.5&nbsp;<A NAME="16486">

 </A>

The variation of <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor parasitic capacitance. Values were obtained from a series of DC simulations using PSpice v5.4, the parameters shown in Table&nbsp;<A HREF="#38143" CLASS="XRef">

3.1</A>

 (<SPAN CLASS="BodyComputer">

LEVEL=3</SPAN>

), and by varying the input voltage, <SPAN CLASS="BodyComputer">

v(in1)</SPAN>

, of the inverter in Figure&nbsp;<A HREF="CH03.1.htm#19386" CLASS="XRef">

3.3</A>

(a). Data points are joined by straight lines. Note that <SPAN CLASS="BodyComputer">

CGSOV</SPAN>

<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

<SPAN CLASS="BodyComputer">

CGDOV</SPAN>

. </P>

</TD>

</TR>

</TABLE>

</DIV>

<DIV>

<H3 CLASS="Heading2">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -