⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch03.1.htm

📁 介绍asci设计的一本书
💻 HTM
📖 第 1 页 / 共 3 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML EXPERIMENTAL 970324//EN">

<HTML>

<HEAD>

<META NAME="GENERATOR" CONTENT="Adobe FrameMaker 5.5/HTML Export Filter">



<TITLE> 3.1&nbsp;Transistors as Resistors</TITLE></HEAD><!--#include file="top.html"--><!--#include file="header.html"-->



<DIV>

<P>[&nbsp;<A HREF="CH03.htm">Chapter&nbsp;start</A>&nbsp;]&nbsp;[&nbsp;<A HREF="CH03.htm">Previous&nbsp;page</A>&nbsp;]&nbsp;[&nbsp;<A HREF="CH03.2.htm">Next&nbsp;page</A>&nbsp;]</P><!--#include file="AmazonAsic.html"--><HR></DIV>

<H1 CLASS="Heading1">

<A NAME="pgfId=107743">

 </A>

3.1&nbsp;<A NAME="24209">

 </A>

Transistors as Resistors</H1>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=134476">

 </A>

In Section 2.1, &#8220;CMOS Transistors,&#8221; we modeled transistors using ideal switches. If this model were accurate, logic cells would have no delay. </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=134485">

 </A>

<IMG SRC="CH03-1.gif" ALIGN="BASELINE">

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigureTitle">

<A NAME="pgfId=161464">

 </A>

FIGURE&nbsp;3.1&nbsp;<A NAME="33981">

 </A>

A model for CMOS logic delay. (a)&nbsp;A CMOS inverter with a load capacitance, <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

out</SUB>

. (b)&nbsp;Input, <SPAN CLASS="BodyComputer">

v(in1)</SPAN>

, and output, <SPAN CLASS="BodyComputer">

v(out1)</SPAN>

, waveforms showing the definition of the falling propagation delay, <SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

PDf</SUB>

. In this case delay is measured from the input trip point of 0.5. The output trip points are 0.35 (falling) and 0.65 (rising). The model predicts <SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

PDf</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

 <SPAN CLASS="Symbol">

&#170; </SPAN>

<SPAN CLASS="EquationVariables">

R</SPAN>

<SUB CLASS="SubscriptVariable">

pd</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

(<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

p</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

+<SPAN CLASS="Symbol">

 </SPAN>

<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="Subscript">

out</SUB>

). (c)&nbsp;The model for the inverter includes: the input capacitance, <SPAN CLASS="EquationVariables">

C</SPAN>

<SPAN CLASS="Symbol">

 </SPAN>

; the pull-up resistance (<SPAN CLASS="EquationVariables">

R</SPAN>

<SUB CLASS="SubscriptVariable">

pu</SUB>

) and pull-down resistance (<SPAN CLASS="EquationVariables">

R</SPAN>

<SUB CLASS="SubscriptVariable">

pd</SUB>

); and the parasitic output capacitance, <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

p</SUB>

. </P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=180520">

 </A>

The ramp input, <SPAN CLASS="BodyComputer">

v(in1)</SPAN>

, to the inverter in Figure&nbsp;<A HREF="#33981" CLASS="XRef">

3.1</A>

(a) rises quickly from zero to <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

. In response the output, <SPAN CLASS="BodyComputer">

v(out1)</SPAN>

, falls from <SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

 to zero. In Figure&nbsp;<A HREF="#33981" CLASS="XRef">

3.1</A>

(b) we measure the <SPAN CLASS="Definition">

propagation delay</SPAN>

 of the inverter, <SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

PD</SUB>

, using an input trip point of 0.5 and output trip points of 0.35 (falling, <SPAN CLASS="EquationVariables">

t</SPAN>

<A NAME="marker=171562">

 </A>

<SUB CLASS="SubscriptVariable">

PDf</SUB>

) and 0.65 (rising, <SPAN CLASS="EquationVariables">

t</SPAN>

<A NAME="marker=171563">

 </A>

<SUB CLASS="SubscriptVariable">

PDr</SUB>

). Initially the <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor, <SPAN CLASS="BodyComputer">

m1</SPAN>

, is <SPAN CLASS="Emphasis">

off</SPAN>

. As the input rises, <SPAN CLASS="BodyComputer">

m1</SPAN>

 turns <SPAN CLASS="Emphasis">

on</SPAN>

 in the saturation region (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS </SUB>

<SPAN CLASS="Symbol">

 </SPAN>

&gt; <SPAN CLASS="Symbol">

 </SPAN>

<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

&#8211; <SPAN CLASS="Symbol">

 </SPAN>

V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

) before entering the linear region (<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DS</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

 &lt; <SPAN CLASS="Symbol">

 </SPAN>

<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

GS</SUB>

<SPAN CLASS="Symbol">

 </SPAN>

 &#8211; <SPAN CLASS="Symbol">

 </SPAN>

V<SUB CLASS="Subscript">

t</SUB>

<SUB CLASS="SubscriptVariable">

n</SUB>

). We model transistor <SPAN CLASS="BodyComputer">

m1</SPAN>

 with a resistor, <SPAN CLASS="EquationVariables">

R</SPAN>

<A NAME="marker=171560">

 </A>

<SUB CLASS="SubscriptVariable">

pd</SUB>

<SPAN CLASS="EquationVariables">

 </SPAN>

(Figure&nbsp;<A HREF="#33981" CLASS="XRef">

3.1</A>

c); this is the <SPAN CLASS="Definition">

pull-down resistance</SPAN>

<A NAME="marker=108019">

 </A>

. The equivalent resistance of <SPAN CLASS="BodyComputer">

m2</SPAN>

 is the <SPAN CLASS="Definition">

pull-up resistance</SPAN>

, <SPAN CLASS="EquationVariables">

R</SPAN>

<A NAME="marker=171561">

 </A>

<SUB CLASS="SubscriptVariable">

pu</SUB>

.</P>

<P CLASS="Body">

<A NAME="pgfId=234580">

 </A>

Delay is created by the pull-up and pull-down resistances, <SPAN CLASS="EquationVariables">

R</SPAN>

<SUB CLASS="SubscriptVariable">

pd</SUB>

 and <SPAN CLASS="EquationVariables">

R</SPAN>

<SUB CLASS="SubscriptVariable">

pu</SUB>

, together with the parasitic capacitance at the output of the cell, <SPAN CLASS="EquationVariables">

C</SPAN>

<A NAME="marker=234581">

 </A>

<SUB CLASS="SubscriptVariable">

p</SUB>

 (the <SPAN CLASS="Definition">

intrinsic output capacitance</SPAN>

<A NAME="marker=234582">

 </A>

) and the <A NAME="marker=234583">

 </A>

<SPAN CLASS="Definition">

load capacitance</SPAN>

 (or <SPAN CLASS="Definition">

extrinsic output capacitance</SPAN>

<A NAME="marker=234584">

 </A>

), <SPAN CLASS="EquationVariables">

C</SPAN>

<A NAME="marker=234585">

 </A>

<SUB CLASS="Subscript">

out</SUB>

 (Figure&nbsp;<A HREF="#33981" CLASS="XRef">

3.1</A>

c). If we assume a constant value for <SPAN CLASS="EquationVariables">

R</SPAN>

<SUB CLASS="SubscriptVariable">

pd</SUB>

, the output reaches a lower trip point of 0.35 when (Figure&nbsp;<A HREF="#33981" CLASS="XRef">

3.1</A>

b),  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=249177">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=249179">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=249181">

 </A>

&#8211;<SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

PDf</SUB>

</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=249183">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=249185">

 </A>

&nbsp;</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=249187">

 </A>

0.35<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

 =</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=249189">

 </A>

<SPAN CLASS="EquationVariables">

V</SPAN>

<SUB CLASS="SubscriptVariable">

DD</SUB>

&nbsp;exp</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=249191">

 </A>

&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;&#8211;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=249193">

 </A>

.</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=249195">

 </A>

(3.1)</P>

</TD>

</TR>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=249197">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=249199">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=249201">

 </A>

<SPAN CLASS="EquationVariables">

R</SPAN>

<SUB CLASS="SubscriptVariable">

pd </SUB>

(<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

out</SUB>

 + <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

p</SUB>

)</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqn">

<A NAME="pgfId=249203">

 </A>

&nbsp;</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="Table">

<A NAME="pgfId=249205">

 </A>

&nbsp;</P>

</TD>

</TR>

</TABLE>

<P CLASS="Body">

<A NAME="pgfId=220823">

 </A>

An output trip point of 0.35 is convenient because ln<SPAN CLASS="Symbol">

 </SPAN>

(1/0.35)<SPAN CLASS="Symbol">

 </SPAN>

=<SPAN CLASS="Symbol">

 </SPAN>

1.04<SPAN CLASS="Symbol">

 &#170; </SPAN>

1 and thus  </P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnCenter">

<A NAME="pgfId=221075">

 </A>

<SPAN CLASS="EquationVariables">

t</SPAN>

<SUB CLASS="SubscriptVariable">

PDf </SUB>

= <SPAN CLASS="EquationVariables">

R</SPAN>

<SUB CLASS="SubscriptVariable">

pd</SUB>

(<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

out</SUB>

 + <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

p</SUB>

) ln (1/0.35) <SPAN CLASS="Symbol">

&#170; </SPAN>

<SPAN CLASS="EquationVariables">

R</SPAN>

<SUB CLASS="SubscriptVariable">

pd</SUB>

(<SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

out</SUB>

 + <SPAN CLASS="EquationVariables">

C</SPAN>

<SUB CLASS="SubscriptVariable">

p</SUB>

) .</P>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableEqnNumber">

<A NAME="pgfId=221077">

 </A>

<A NAME="10713">

 </A>

(3.2)</P>

</TD>

</TR>

</TABLE>

<P CLASS="BodyAfterHead">

<A NAME="pgfId=220830">

 </A>

The expression for the rising delay (with a 0.65 output trip point) is identical in form. Delay thus increases linearly with the load capacitance. We often measure load capacitance in terms of a <SPAN CLASS="Definition">

standard load</SPAN>

<A NAME="marker=220831">

 </A>

&#8212;the input capacitance presented by a particular cell (often an inverter or two-input NAND cell).</P>

<P CLASS="Body">

<A NAME="pgfId=300638">

 </A>

We may adjust the delay for different trip points. For example, for output trip points of 0.1/0.9 we multiply Eq.&nbsp;<A HREF="#10713" CLASS="XRef">

3.2</A>

 by &#8211;ln(0.1) = 2.3, because exp&nbsp;(&#8211;2.3) = 0.100.</P>

<P CLASS="Body">

<A NAME="pgfId=180275">

 </A>

Figure&nbsp;<A HREF="#34786" CLASS="XRef">

3.2</A>

 shows the DC characteristics of a CMOS inverter. To form Figure&nbsp;<A HREF="#34786" CLASS="XRef">

3.2</A>

(b) we take the <SPAN CLASS="EmphasisPrefix">

n</SPAN>

-channel transistor surface (Figure&nbsp;2.4b) and add that for a <SPAN CLASS="EmphasisPrefix">

p</SPAN>

-channel transistor (rotated to account for the connections). Seen from above, the intersection of the two surfaces is the static transfer curve of Figure&nbsp;<A HREF="#34786" CLASS="XRef">

3.2</A>

(a)&#8212;along this path the transistor currents are equal and there is no output current to change the output voltage. Seen from one side, the intersection is the curve of Figure&nbsp;<A HREF="#34786" CLASS="XRef">

3.2</A>

(c).</P>

<TABLE>

<TR>

<TD ROWSPAN="1" COLSPAN="1">

<P CLASS="TableFigure">

<A NAME="pgfId=180253">

 </A>

<SPAN CLASS="Bold">

(a)</SPAN>

</P>

<DIV>

<IMG SRC="CH03-2.gif">

</DIV>

</TD>

<TD ROWSPAN="1" COLSPAN="1">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -