📄 paq8f.cpp
字号:
class ContextMap {
const int C; // max number of contexts
class E { // hash element, 64 bytes
U16 chk[7]; // byte context checksums
U8 last; // last 2 accesses (0-6) in low, high nibble
public:
U8 bh[7][7]; // byte context, 3-bit context -> bit history state
// bh[][0] = 1st bit, bh[][1,2] = 2nd bit, bh[][3..6] = 3rd bit
// bh[][0] is also a replacement priority, 0 = empty
U8* get(U16 chk); // Find element (0-6) matching checksum.
// If not found, insert or replace lowest priority (not last).
};
Array<E, 64> t; // bit histories for bits 0-1, 2-4, 5-7
// For 0-1, also contains a run count in bh[][4] and value in bh[][5]
// and pending update count in bh[7]
Array<U8*> cp; // C pointers to current bit history
Array<U8*> cp0; // First element of 7 element array containing cp[i]
Array<U32> cxt; // C whole byte contexts (hashes)
Array<U8*> runp; // C [0..3] = count, value, unused, unused
StateMap *sm; // C maps of state -> p
int cn; // Next context to set by set()
void update(U32 cx, int c); // train model that context cx predicts c
int mix1(Mixer& m, int cc, int bp, int c1, int y1);
// mix() with global context passed as arguments to improve speed.
public:
ContextMap(int m, int c=1); // m = memory in bytes, a power of 2, C = c
void set(U32 cx); // set next whole byte context
int mix(Mixer& m) {return mix1(m, c0, bpos, buf(1), y);}
};
// Find or create hash element matching checksum ch
inline U8* ContextMap::E::get(U16 ch) {
if (chk[last&15]==ch) return &bh[last&15][0];
int b=0xffff, bi=0;
for (int i=0; i<7; ++i) {
if (chk[i]==ch) return last=last<<4|i, &bh[i][0];
int pri=bh[i][0];
if ((last&15)!=i && last>>4!=i && pri<b) b=pri, bi=i;
}
return last=0xf0|bi, chk[bi]=ch, (U8*)memset(&bh[bi][0], 0, 7);
}
// Construct using m bytes of memory for c contexts
ContextMap::ContextMap(int m, int c): C(c), t(m>>6), cp(c), cp0(c),
cxt(c), runp(c), cn(0) {
assert(m>=64 && (m&m-1)==0); // power of 2?
assert(sizeof(E)==64);
sm=new StateMap[C];
for (int i=0; i<C; ++i) {
cp0[i]=cp[i]=&t[0].bh[0][0];
runp[i]=cp[i]+3;
}
}
// Set the i'th context to cx
inline void ContextMap::set(U32 cx) {
int i=cn++;
assert(i>=0 && i<C);
cx=cx*987654323+i; // permute (don't hash) cx to spread the distribution
cx=cx<<16|cx>>16;
cxt[i]=cx*123456791+i;
}
// Update the model with bit y1, and predict next bit to mixer m.
// Context: cc=c0, bp=bpos, c1=buf(1), y1=y.
int ContextMap::mix1(Mixer& m, int cc, int bp, int c1, int y1) {
// Update model with y
int result=0;
for (int i=0; i<cn; ++i) {
if (cp[i]) {
assert(cp[i]>=&t[0].bh[0][0] && cp[i]<=&t[t.size()-1].bh[6][6]);
assert((long(cp[i])&63)>=15);
int ns=nex(*cp[i], y1);
if (ns>=204 && rnd() << (452-ns>>3)) ns-=4; // probabilistic increment
*cp[i]=ns;
}
// Update context pointers
if (bpos>1 && runp[i][0]==0)
cp[i]=0;
else if (bpos==1||bpos==3||bpos==6)
cp[i]=cp0[i]+1+(cc&1);
else if (bpos==4||bpos==7)
cp[i]=cp0[i]+3+(cc&3);
else {
cp0[i]=cp[i]=t[cxt[i]+cc&t.size()-1].get(cxt[i]>>16);
// Update pending bit histories for bits 2-7
if (bpos==0) {
if (cp0[i][3]==2) {
const int c=cp0[i][4]+256;
U8 *p=t[cxt[i]+(c>>6)&t.size()-1].get(cxt[i]>>16);
p[0]=1+((c>>5)&1);
p[1+((c>>5)&1)]=1+((c>>4)&1);
p[3+((c>>4)&3)]=1+((c>>3)&1);
p=t[cxt[i]+(c>>3)&t.size()-1].get(cxt[i]>>16);
p[0]=1+((c>>2)&1);
p[1+((c>>2)&1)]=1+((c>>1)&1);
p[3+((c>>1)&3)]=1+(c&1);
cp0[i][6]=0;
}
// Update run count of previous context
if (runp[i][0]==0) // new context
runp[i][0]=2, runp[i][1]=c1;
else if (runp[i][1]!=c1) // different byte in context
runp[i][0]=1, runp[i][1]=c1;
else if (runp[i][0]<254) // same byte in context
runp[i][0]+=2;
runp[i]=cp0[i]+3;
}
}
// predict from last byte in context
int rc=runp[i][0]; // count*2, +1 if 2 different bytes seen
if (runp[i][1]+256>>8-bp==cc) {
int b=(runp[i][1]>>7-bp&1)*2-1; // predicted bit + for 1, - for 0
int c=ilog(rc+1)<<2+(~rc&1);
m.add(b*c);
}
else
m.add(0);
// predict from bit context
result+=mix2(m, cp[i] ? *cp[i] : 0, sm[i]);
}
if (bp==7) cn=0;
return result;
}
//////////////////////////// Models //////////////////////////////
// All of the models below take a Mixer as a parameter and write
// predictions to it.
//////////////////////////// matchModel ///////////////////////////
// matchModel() finds the longest matching context and returns its length
int matchModel(Mixer& m) {
const int MAXLEN=2047; // longest allowed match + 1
static Array<int> t(MEM); // hash table of pointers to contexts
static int h=0; // hash of last 7 bytes
static int ptr=0; // points to next byte of match if any
static int len=0; // length of match, or 0 if no match
static int result=0;
if (!bpos) {
h=h*997*8+buf(1)+1&t.size()-1; // update context hash
if (len) ++len, ++ptr;
else { // find match
ptr=t[h];
if (ptr && pos-ptr<buf.size())
while (buf(len+1)==buf[ptr-len-1] && len<MAXLEN) ++len;
}
t[h]=pos; // update hash table
result=len;
if (result>0 && !(result&0xfff)) printf("pos=%d len=%d ptr=%d\n", pos, len, ptr);
}
// predict
if (len>MAXLEN) len=MAXLEN;
int sgn;
if (len && buf(1)==buf[ptr-1] && c0==buf[ptr]+256>>8-bpos) {
if (buf[ptr]>>7-bpos&1) sgn=1;
else sgn=-1;
}
else sgn=len=0;
m.add(sgn*4*ilog(len));
m.add(sgn*64*min(len, 32));
return result;
}
//////////////////////////// picModel //////////////////////////
// Model a 1728 by 2376 2-color CCITT bitmap image, left to right scan,
// MSB first (216 bytes per row, 513216 bytes total). Insert predictions
// into m.
void picModel(Mixer& m) {
static U32 r0, r1, r2, r3; // last 5 rows, bit 8 is over current pixel
static Array<U8> t(0x10200); // model: cxt -> state
const int N=3; // number of contexts
static int cxt[N]; // contexts
static StateMap sm[N];
// update the model
for (int i=0; i<N; ++i)
t[cxt[i]]=nex(t[cxt[i]],y);
// update the contexts (pixels surrounding the predicted one)
r0+=r0+y;
r1+=r1+((buf(215)>>(7-bpos))&1);
r2+=r2+((buf(431)>>(7-bpos))&1);
r3+=r3+((buf(647)>>(7-bpos))&1);
cxt[0]=r0&0x7|r1>>4&0x38|r2>>3&0xc0;
cxt[1]=0x100+(r0&1|r1>>4&0x3e|r2>>2&0x40|r3>>1&0x80);
cxt[2]=0x200+(r0&0x3f^r1&0x3ffe^r2<<2&0x7f00^r3<<5&0xf800);
// predict
{
for (int i=0; i<N; ++i)
m.add(stretch(sm[i].p(t[cxt[i]])));
}
}
//////////////////////////// wordModel /////////////////////////
// Model English text (words and columns/end of line)
void wordModel(Mixer& m) {
static U32 word0=0, word1=0, word2=0, word3=0, word4=0; // hashes
static U32 text0=0; // hash stream of letters
static ContextMap cm(MEM*32, 14);
static Array<int> wpos(MEM); // last position of word
static int nl1=-3, nl=-2; // previous, current newline position
// Update word hashes
if (bpos==0) {
int c=c4&255;
if (c>='A' && c<='Z')
c+='a'-'A';
if (c>='a' && c<='z' || c>=128) {
word0=word0*263*4+c;
text0=text0*997*16+c;
}
else if (word0) {
word4=word3*11;
word3=word2*7;
word2=word1*5;
word1=word0*3;
word0=0;
}
if (c==10) nl1=nl, nl=pos-1;
int col=min(255, pos-nl), above=buf[nl1+col]; // text column context
U32 h=word0*271+buf(1);
cm.set(h);
cm.set(word0);
cm.set(h+word1);
cm.set(word0+word1*17);
cm.set(h+word2);
cm.set(h+word1+word2);
cm.set(h+word3);
cm.set(h+word4);
cm.set(text0&0xffff);
cm.set(text0&0xfffff);
// Text column models
cm.set(col<<8|above);
cm.set(col<<8|buf(1));
cm.set(buf(1)<<8|above);
cm.set(col);
}
cm.mix(m);
}
//////////////////////////// recordModel ///////////////////////
// Model 2-D data with fixed record length. Also order 1-2 models
// that include the distance to the last match.
void recordModel(Mixer& m) {
static Array<int> cpos1(256), cpos2(256), cpos3(256), cpos4(256); //buf(1)->last 3 pos
static Array<int> wpos1(0x10000); // buf(1..2) -> last position
static int rlen=2, rlen1=3, rlen2=4; // run length and 2 candidates
static int rcount1=0, rcount2=0; // candidate counts
static ContextMap cm(MEM*4, 7);
// Find record length
if (!bpos) {
int c=buf(1);
int w=c4&0xffff;
int r=pos-cpos1[c];
if (r>1 && r==cpos1[c]-cpos2[c]
&& r==cpos2[c]-cpos3[c] && r==cpos3[c]-cpos4[c]
&& (r>15 || (c==buf(r*5+1)) && c==buf(r*6+1))) {
if (r==rlen1) ++rcount1;
else if (r==rlen2) ++rcount2;
else if (rcount1>rcount2) rlen2=r, rcount2=1;
else rlen1=r, rcount1=1;
}
if (rcount1>15 && rlen!=rlen1) rlen=rlen1, rcount1=rcount2=0;
if (rcount2>15 && rlen!=rlen2) rlen=rlen2, rcount1=rcount2=0;
// Set 2 dimensional contexts
assert(rlen>0);
cm.set(buf(1)<<8|min(255, pos-cpos1[buf(1)]));
cm.set(buf(1)<<17|buf(2)<<9|llog(pos-wpos1[w])>>2);
int col=pos%rlen;
cm.set(buf(1)<<8|buf(rlen));
cm.set(rlen|buf(rlen)<<10|buf(rlen*2)<<18);
cm.set(rlen|buf(rlen)<<10|col<<18);
cm.set(rlen|buf(1)<<10|col<<18);
cm.set(col|rlen<<12);
// update last context positions
cpos4[c]=cpos3[c];
cpos3[c]=cpos2[c];
cpos2[c]=cpos1[c];
cpos1[c]=pos;
wpos1[w]=pos;
}
cm.mix(m);
}
//////////////////////////// sparseModel ///////////////////////
// Model order 1-2 contexts with gaps.
void sparseModel(Mixer& m) {
static ContextMap cm(MEM*4, 8), scm(MEM, 8);
if (bpos==0) {
cm.set(c4&0x00ff00ff);
cm.set(c4&0xff0000ff);
cm.set(buf(1)|buf(5)<<8);
cm.set(buf(1)|buf(6)<<8);
cm.set(c4&0x00ffff00);
cm.set(c4&0xff00ff00);
cm.set(buf(3)|buf(6)<<8);
cm.set(buf(4)|buf(8)<<8);
for (int i=0; i<8; ++i)
scm.set(buf(i+1));
}
cm.mix(m);
scm.mix(m);
}
//////////////////////////// bmpModel /////////////////////////////////
// Model a 24-bit color uncompressed .bmp or .tif file. Return
// width in pixels if an image file is detected, else 0.
// 32-bit little endian number at buf(i)..buf(i-3)
inline U32 i4(int i) {
assert(i>3);
return buf(i)+256*buf(i-1)+65536*buf(i-2)+16777216*buf(i-3);
}
// 16-bit
inline int i2(int i) {
assert(i>1);
return buf(i)+256*buf(i-1);
}
// Square buf(i)
inline int sqrbuf(int i) {
assert(i>0);
return buf(i)*buf(i);
}
int bmpModel(Mixer& m) {
static int w=0; // width of image in bytes (pixels * 3)
static int eoi=0; // end of image
static U32 tiff=0; // offset of tif header
const int SC=0x20000;
static SmallStationaryContextMap scm1(SC), scm2(SC),
scm3(SC), scm4(SC), scm5(SC), scm6(SC*2);
static ContextMap cm(MEM*4, 8);
// Detect .bmp file header (24 bit color, not
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -