📄 paq8f.cpp
字号:
class Buf {
Array<U8> b;
public:
Buf(int i=0): b(i) {}
void setsize(int i) {
if (!i) return;
assert(i>0 && (i&(i-1))==0);
b.resize(i);
}
U8& operator[](int i) {
return b[i&b.size()-1];
}
int operator()(int i) const {
assert(i>0);
return b[pos-i&b.size()-1];
}
int size() const {
return b.size();
}
};
/////////////////////// Global context /////////////////////////
int level=DEFAULT_OPTION; // Compression level 0 to 9
#define MEM (0x10000<<level)
int y=0; // Last bit, 0 or 1, set by encoder
// Global context set by Predictor and available to all models.
int c0=1; // Last 0-7 bits of the partial byte with a leading 1 bit (1-255)
U32 c4=0; // Last 4 whole bytes, packed. Last byte is bits 0-7.
int bpos=0; // bits in c0 (0 to 7)
Buf buf; // Rotating input queue set by Predictor
///////////////////////////// ilog //////////////////////////////
// ilog(x) = round(log2(x) * 16), 0 <= x < 64K
class Ilog {
Array<U8> t;
public:
int operator()(U16 x) const {return t[x];}
Ilog();
} ilog;
// Compute lookup table by numerical integration of 1/x
Ilog::Ilog(): t(65536) {
U32 x=14155776;
for (int i=2; i<65536; ++i) {
x+=774541002/(i*2-1); // numerator is 2^29/ln 2
t[i]=x>>24;
}
}
// llog(x) accepts 32 bits
inline int llog(U32 x) {
if (x>=0x1000000)
return 256+ilog(x>>16);
else if (x>=0x10000)
return 128+ilog(x>>8);
else
return ilog(x);
}
///////////////////////// state table ////////////////////////
// State table:
// nex(state, 0) = next state if bit y is 0, 0 <= state < 256
// nex(state, 1) = next state if bit y is 1
// nex(state, 2) = number of zeros in bit history represented by state
// nex(state, 3) = number of ones represented
//
// States represent a bit history within some context.
// State 0 is the starting state (no bits seen).
// States 1-30 represent all possible sequences of 1-4 bits.
// States 31-252 represent a pair of counts, (n0,n1), the number
// of 0 and 1 bits respectively. If n0+n1 < 16 then there are
// two states for each pair, depending on if a 0 or 1 was the last
// bit seen.
// If n0 and n1 are too large, then there is no state to represent this
// pair, so another state with about the same ratio of n0/n1 is substituted.
// Also, when a bit is observed and the count of the opposite bit is large,
// then part of this count is discarded to favor newer data over old.
#if 1 // change to #if 0 to generate this table at run time (4% slower)
static const U8 State_table[256][4]={
{ 1, 2, 0, 0},{ 3, 5, 1, 0},{ 4, 6, 0, 1},{ 7, 10, 2, 0}, // 0-3
{ 8, 12, 1, 1},{ 9, 13, 1, 1},{ 11, 14, 0, 2},{ 15, 19, 3, 0}, // 4-7
{ 16, 23, 2, 1},{ 17, 24, 2, 1},{ 18, 25, 2, 1},{ 20, 27, 1, 2}, // 8-11
{ 21, 28, 1, 2},{ 22, 29, 1, 2},{ 26, 30, 0, 3},{ 31, 33, 4, 0}, // 12-15
{ 32, 35, 3, 1},{ 32, 35, 3, 1},{ 32, 35, 3, 1},{ 32, 35, 3, 1}, // 16-19
{ 34, 37, 2, 2},{ 34, 37, 2, 2},{ 34, 37, 2, 2},{ 34, 37, 2, 2}, // 20-23
{ 34, 37, 2, 2},{ 34, 37, 2, 2},{ 36, 39, 1, 3},{ 36, 39, 1, 3}, // 24-27
{ 36, 39, 1, 3},{ 36, 39, 1, 3},{ 38, 40, 0, 4},{ 41, 43, 5, 0}, // 28-31
{ 42, 45, 4, 1},{ 42, 45, 4, 1},{ 44, 47, 3, 2},{ 44, 47, 3, 2}, // 32-35
{ 46, 49, 2, 3},{ 46, 49, 2, 3},{ 48, 51, 1, 4},{ 48, 51, 1, 4}, // 36-39
{ 50, 52, 0, 5},{ 53, 43, 6, 0},{ 54, 57, 5, 1},{ 54, 57, 5, 1}, // 40-43
{ 56, 59, 4, 2},{ 56, 59, 4, 2},{ 58, 61, 3, 3},{ 58, 61, 3, 3}, // 44-47
{ 60, 63, 2, 4},{ 60, 63, 2, 4},{ 62, 65, 1, 5},{ 62, 65, 1, 5}, // 48-51
{ 50, 66, 0, 6},{ 67, 55, 7, 0},{ 68, 57, 6, 1},{ 68, 57, 6, 1}, // 52-55
{ 70, 73, 5, 2},{ 70, 73, 5, 2},{ 72, 75, 4, 3},{ 72, 75, 4, 3}, // 56-59
{ 74, 77, 3, 4},{ 74, 77, 3, 4},{ 76, 79, 2, 5},{ 76, 79, 2, 5}, // 60-63
{ 62, 81, 1, 6},{ 62, 81, 1, 6},{ 64, 82, 0, 7},{ 83, 69, 8, 0}, // 64-67
{ 84, 71, 7, 1},{ 84, 71, 7, 1},{ 86, 73, 6, 2},{ 86, 73, 6, 2}, // 68-71
{ 44, 59, 5, 3},{ 44, 59, 5, 3},{ 58, 61, 4, 4},{ 58, 61, 4, 4}, // 72-75
{ 60, 49, 3, 5},{ 60, 49, 3, 5},{ 76, 89, 2, 6},{ 76, 89, 2, 6}, // 76-79
{ 78, 91, 1, 7},{ 78, 91, 1, 7},{ 80, 92, 0, 8},{ 93, 69, 9, 0}, // 80-83
{ 94, 87, 8, 1},{ 94, 87, 8, 1},{ 96, 45, 7, 2},{ 96, 45, 7, 2}, // 84-87
{ 48, 99, 2, 7},{ 48, 99, 2, 7},{ 88,101, 1, 8},{ 88,101, 1, 8}, // 88-91
{ 80,102, 0, 9},{103, 69,10, 0},{104, 87, 9, 1},{104, 87, 9, 1}, // 92-95
{106, 57, 8, 2},{106, 57, 8, 2},{ 62,109, 2, 8},{ 62,109, 2, 8}, // 96-99
{ 88,111, 1, 9},{ 88,111, 1, 9},{ 80,112, 0,10},{113, 85,11, 0}, // 100-103
{114, 87,10, 1},{114, 87,10, 1},{116, 57, 9, 2},{116, 57, 9, 2}, // 104-107
{ 62,119, 2, 9},{ 62,119, 2, 9},{ 88,121, 1,10},{ 88,121, 1,10}, // 108-111
{ 90,122, 0,11},{123, 85,12, 0},{124, 97,11, 1},{124, 97,11, 1}, // 112-115
{126, 57,10, 2},{126, 57,10, 2},{ 62,129, 2,10},{ 62,129, 2,10}, // 116-119
{ 98,131, 1,11},{ 98,131, 1,11},{ 90,132, 0,12},{133, 85,13, 0}, // 120-123
{134, 97,12, 1},{134, 97,12, 1},{136, 57,11, 2},{136, 57,11, 2}, // 124-127
{ 62,139, 2,11},{ 62,139, 2,11},{ 98,141, 1,12},{ 98,141, 1,12}, // 128-131
{ 90,142, 0,13},{143, 95,14, 0},{144, 97,13, 1},{144, 97,13, 1}, // 132-135
{ 68, 57,12, 2},{ 68, 57,12, 2},{ 62, 81, 2,12},{ 62, 81, 2,12}, // 136-139
{ 98,147, 1,13},{ 98,147, 1,13},{100,148, 0,14},{149, 95,15, 0}, // 140-143
{150,107,14, 1},{150,107,14, 1},{108,151, 1,14},{108,151, 1,14}, // 144-147
{100,152, 0,15},{153, 95,16, 0},{154,107,15, 1},{108,155, 1,15}, // 148-151
{100,156, 0,16},{157, 95,17, 0},{158,107,16, 1},{108,159, 1,16}, // 152-155
{100,160, 0,17},{161,105,18, 0},{162,107,17, 1},{108,163, 1,17}, // 156-159
{110,164, 0,18},{165,105,19, 0},{166,117,18, 1},{118,167, 1,18}, // 160-163
{110,168, 0,19},{169,105,20, 0},{170,117,19, 1},{118,171, 1,19}, // 164-167
{110,172, 0,20},{173,105,21, 0},{174,117,20, 1},{118,175, 1,20}, // 168-171
{110,176, 0,21},{177,105,22, 0},{178,117,21, 1},{118,179, 1,21}, // 172-175
{110,180, 0,22},{181,115,23, 0},{182,117,22, 1},{118,183, 1,22}, // 176-179
{120,184, 0,23},{185,115,24, 0},{186,127,23, 1},{128,187, 1,23}, // 180-183
{120,188, 0,24},{189,115,25, 0},{190,127,24, 1},{128,191, 1,24}, // 184-187
{120,192, 0,25},{193,115,26, 0},{194,127,25, 1},{128,195, 1,25}, // 188-191
{120,196, 0,26},{197,115,27, 0},{198,127,26, 1},{128,199, 1,26}, // 192-195
{120,200, 0,27},{201,115,28, 0},{202,127,27, 1},{128,203, 1,27}, // 196-199
{120,204, 0,28},{205,115,29, 0},{206,127,28, 1},{128,207, 1,28}, // 200-203
{120,208, 0,29},{209,125,30, 0},{210,127,29, 1},{128,211, 1,29}, // 204-207
{130,212, 0,30},{213,125,31, 0},{214,137,30, 1},{138,215, 1,30}, // 208-211
{130,216, 0,31},{217,125,32, 0},{218,137,31, 1},{138,219, 1,31}, // 212-215
{130,220, 0,32},{221,125,33, 0},{222,137,32, 1},{138,223, 1,32}, // 216-219
{130,224, 0,33},{225,125,34, 0},{226,137,33, 1},{138,227, 1,33}, // 220-223
{130,228, 0,34},{229,125,35, 0},{230,137,34, 1},{138,231, 1,34}, // 224-227
{130,232, 0,35},{233,125,36, 0},{234,137,35, 1},{138,235, 1,35}, // 228-231
{130,236, 0,36},{237,125,37, 0},{238,137,36, 1},{138,239, 1,36}, // 232-235
{130,240, 0,37},{241,125,38, 0},{242,137,37, 1},{138,243, 1,37}, // 236-239
{130,244, 0,38},{245,135,39, 0},{246,137,38, 1},{138,247, 1,38}, // 240-243
{140,248, 0,39},{249,135,40, 0},{250, 69,39, 1},{ 80,251, 1,39}, // 244-247
{140,252, 0,40},{249,135,41, 0},{250, 69,40, 1},{ 80,251, 1,40}, // 248-251
{140,252, 0,41}}; // 252, 253-255 are reserved
#define nex(state,sel) State_table[state][sel]
// The code used to generate the above table at run time (4% slower).
// To print the table, uncomment the 4 lines of print statements below.
// In this code x,y = n0,n1 is the number of 0,1 bits represented by a state.
#else
class StateTable {
Array<U8> ns; // state*4 -> next state if 0, if 1, n0, n1
enum {B=5, N=64}; // sizes of b, t
static const int b[B]; // x -> max y, y -> max x
static U8 t[N][N][2]; // x,y -> state number, number of states
int num_states(int x, int y); // compute t[x][y][1]
void discount(int& x); // set new value of x after 1 or y after 0
void next_state(int& x, int& y, int b); // new (x,y) after bit b
public:
int operator()(int state, int sel) {return ns[state*4+sel];}
StateTable();
} nex;
const int StateTable::b[B]={42,41,13,6,5}; // x -> max y, y -> max x
U8 StateTable::t[N][N][2];
int StateTable::num_states(int x, int y) {
if (x<y) return num_states(y, x);
if (x<0 || y<0 || x>=N || y>=N || y>=B || x>=b[y]) return 0;
// States 0-30 are a history of the last 0-4 bits
if (x+y<=4) { // x+y choose x = (x+y)!/x!y!
int r=1;
for (int i=x+1; i<=x+y; ++i) r*=i;
for (int i=2; i<=y; ++i) r/=i;
return r;
}
// States 31-255 represent a 0,1 count and possibly the last bit
// if the state is reachable by either a 0 or 1.
else
return 1+(y>0 && x+y<16);
}
// New value of count x if the opposite bit is observed
void StateTable::discount(int& x) {
if (x>2) x=ilog(x)/6-1;
}
// compute next x,y (0 to N) given input b (0 or 1)
void StateTable::next_state(int& x, int& y, int b) {
if (x<y)
next_state(y, x, 1-b);
else {
if (b) {
++y;
discount(x);
}
else {
++x;
discount(y);
}
while (!t[x][y][1]) {
if (y<2) --x;
else {
x=(x*(y-1)+(y/2))/y;
--y;
}
}
}
}
// Initialize next state table ns[state*4] -> next if 0, next if 1, x, y
StateTable::StateTable(): ns(1024) {
// Assign states
int state=0;
for (int i=0; i<256; ++i) {
for (int y=0; y<=i; ++y) {
int x=i-y;
int n=num_states(x, y);
if (n) {
t[x][y][0]=state;
t[x][y][1]=n;
state+=n;
}
}
}
// Print/generate next state table
state=0;
for (int i=0; i<N; ++i) {
for (int y=0; y<=i; ++y) {
int x=i-y;
for (int k=0; k<t[x][y][1]; ++k) {
int x0=x, y0=y, x1=x, y1=y; // next x,y for input 0,1
int ns0=0, ns1=0;
if (state<15) {
++x0;
++y1;
ns0=t[x0][y0][0]+state-t[x][y][0];
ns1=t[x1][y1][0]+state-t[x][y][0];
if (x>0) ns1+=t[x-1][y+1][1];
ns[state*4]=ns0;
ns[state*4+1]=ns1;
ns[state*4+2]=x;
ns[state*4+3]=y;
}
else if (t[x][y][1]) {
next_state(x0, y0, 0);
next_state(x1, y1, 1);
ns[state*4]=ns0=t[x0][y0][0];
ns[state*4+1]=ns1=t[x1][y1][0]+(t[x1][y1][1]>1);
ns[state*4+2]=x;
ns[state*4+3]=y;
}
// uncomment to print table above
// printf("{%3d,%3d,%2d,%2d},", ns[state*4], ns[state*4+1],
// ns[state*4+2], ns[state*4+3]);
// if (state%4==3) printf(" // %d-%d\n ", state-3, state);
assert(state>=0 && state<256);
assert(t[x][y][1]>0);
assert(t[x][y][0]<=state);
assert(t[x][y][0]+t[x][y][1]>state);
assert(t[x][y][1]<=6);
assert(t[x0][y0][1]>0);
assert(t[x1][y1][1]>0);
assert(ns0-t[x0][y0][0]<t[x0][y0][1]);
assert(ns0-t[x0][y0][0]>=0);
assert(ns1-t[x1][y1][0]<t[x1][y1][1]);
assert(ns1-t[x1][y1][0]>=0);
++state;
}
}
}
// printf("%d states\n", state); exit(0); // uncomment to print table above
}
#endif
///////////////////////////// Squash //////////////////////////////
// return p = 1/(1 + exp(-d)), d scaled by 8 bits, p scaled by 12 bits
int squash(int d) {
static const int t[33]={
1,2,3,6,10,16,27,45,73,120,194,310,488,747,1101,
1546,2047,2549,2994,3348,3607,3785,3901,3975,4022,
4050,4068,4079,4085,4089,4092,4093,4094};
if (d>2047) return 4095;
if (d<-2047) return 0;
int w=d&127;
d=(d>>7)+16;
return (t[d]*(128-w)+t[(d+1)]*w+64) >> 7;
}
//////////////////////////// Stretch ///////////////////////////////
// Inverse of squash. d = ln(p/(1-p)), d scaled by 8 bits, p by 12 bits.
// d has range -2047 to 2047 representing -8 to 8. p has range 0 to 4095.
class Stretch {
Array<short> t;
public:
Stretch();
int operator()(int p) const {
assert(p>=0 && p<4096);
return t[p];
}
} stretch;
Stretch::Stretch(): t(4096) {
int pi=0;
for (int x=-2047; x<=2047; ++x) { // invert squash()
int i=squash(x);
for (int j=pi; j<=i; ++j)
t[j]=x;
pi=i+1;
}
t[4095]=2047;
}
//////////////////////////// Mixer /////////////////////////////
// Mixer m(N, M, S=1, w=0) combines models using M neural networks with
// N inputs each, of which up to S may be selected. If S > 1 then
// the outputs of these neural networks are combined using another
// neural network (with parameters S, 1, 1). If S = 1 then the
// output is direct. The weights are initially w (+-32K).
// It is used as follows:
// m.update() trains the network where the expected output is the
// last bit (in the global variable y).
// m.add(stretch(p)) inputs prediction from one of N models. The
// prediction should be positive to predict a 1 bit, negative for 0,
// nominally +-256 to +-2K. The maximum allowed value is +-32K but
// using such large values may cause overflow if N is large.
// m.set(cxt, range) selects cxt as one of 'range' neural networks to
// use. 0 <= cxt < range. Should be called up to S times such
// that the total of the ranges is <= M.
// m.p() returns the output prediction that the next bit is 1 as a
// 12 bit number (0 to 4095).
// dot_product returns dot product t*w of n elements. n is rounded
// up to a multiple of 8. Result is scaled down by 8 bits.
//#ifdef NOASM // no assembly language
int dot_product(short *t, short *w, int n) {
int sum=0;
n=(n+7)&-8;
for (int i=0; i<n; i+=2)
sum+=(t[i]*w[i]+t[i+1]*w[i+1]) >> 8;
return sum;
}
//#else // The NASM version uses MMX and is about 8 times faster.
//extern "C" int dot_product(short *t, short *w, int n); // in NASM
//#endif
// Train neural network weights w[n] given inputs t[n] and err.
// w[i] += t[i]*err, i=0..n-1. t, w, err are signed 16 bits (+- 32K).
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -