⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gc.c

📁 这是著名的jffs2嵌入式日志文件系统的源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001 Red Hat, Inc. * * Created by David Woodhouse <dwmw2@cambridge.redhat.com> * * The original JFFS, from which the design for JFFS2 was derived, * was designed and implemented by Axis Communications AB. * * The contents of this file are subject to the Red Hat eCos Public * License Version 1.1 (the "Licence"); you may not use this file * except in compliance with the Licence.  You may obtain a copy of * the Licence at http://www.redhat.com/ * * Software distributed under the Licence is distributed on an "AS IS" * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. * See the Licence for the specific language governing rights and * limitations under the Licence. * * The Original Code is JFFS2 - Journalling Flash File System, version 2 * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License version 2 (the "GPL"), in * which case the provisions of the GPL are applicable instead of the * above.  If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the RHEPL, indicate your decision by * deleting the provisions above and replace them with the notice and * other provisions required by the GPL.  If you do not delete the * provisions above, a recipient may use your version of this file * under either the RHEPL or the GPL. * * $Id: gc.c,v 1.52.2.3 2002/05/12 17:27:08 dwmw2 Exp $ * */#include <linux/kernel.h>#include <linux/mtd/mtd.h>#include <linux/slab.h>#include <linux/jffs2.h>#include <linux/sched.h>#include <linux/interrupt.h>#include <linux/pagemap.h>#include "nodelist.h"#include "crc32.h"static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 					struct inode *inode, struct jffs2_full_dnode *fd);static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 					struct inode *inode, struct jffs2_full_dirent *fd);static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 					struct inode *inode, struct jffs2_full_dirent *fd);static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,				      struct inode *indeo, struct jffs2_full_dnode *fn,				      __u32 start, __u32 end);static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,				       struct inode *inode, struct jffs2_full_dnode *fn,				       __u32 start, __u32 end);/* Called with erase_completion_lock held */static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c){	struct jffs2_eraseblock *ret;	struct list_head *nextlist = NULL;	/* Pick an eraseblock to garbage collect next. This is where we'll	   put the clever wear-levelling algorithms. Eventually.  */	if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > JFFS2_RESERVED_BLOCKS_GCBAD) {		D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));		nextlist = &c->bad_used_list;	} else if (jiffies % 100 && !list_empty(&c->dirty_list)) {		/* Most of the time, pick one off the dirty list */		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));		nextlist = &c->dirty_list;	} else if (!list_empty(&c->clean_list)) {		D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));		nextlist = &c->clean_list;	} else if (!list_empty(&c->dirty_list)) {		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));		nextlist = &c->dirty_list;	} else {		/* Eep. Both were empty */		printk(KERN_NOTICE "jffs2: No clean _or_ dirty blocks to GC from! Where are they all?\n");		return NULL;	}	ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);	list_del(&ret->list);	c->gcblock = ret;	ret->gc_node = ret->first_node;	if (!ret->gc_node) {		printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);		BUG();	}	return ret;}/* jffs2_garbage_collect_pass * Make a single attempt to progress GC. Move one node, and possibly * start erasing one eraseblock. */int jffs2_garbage_collect_pass(struct jffs2_sb_info *c){	struct jffs2_eraseblock *jeb;	struct jffs2_inode_info *f;	struct jffs2_raw_node_ref *raw;	struct jffs2_node_frag *frag;	struct jffs2_full_dnode *fn = NULL;	struct jffs2_full_dirent *fd;	__u32 start = 0, end = 0, nrfrags = 0;	__u32 inum;	struct inode *inode;	int ret = 0;	if (down_interruptible(&c->alloc_sem))		return -EINTR;	spin_lock_bh(&c->erase_completion_lock);	/* First, work out which block we're garbage-collecting */	jeb = c->gcblock;	if (!jeb)		jeb = jffs2_find_gc_block(c);	if (!jeb) {		printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n");		spin_unlock_bh(&c->erase_completion_lock);		up(&c->alloc_sem);		return -EIO;	}	D1(printk(KERN_DEBUG "garbage collect from block at phys 0x%08x\n", jeb->offset));	if (!jeb->used_size)		goto eraseit;	raw = jeb->gc_node;				while(raw->flash_offset & 1) {		D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", raw->flash_offset &~3));		jeb->gc_node = raw = raw->next_phys;		if (!raw) {			printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");			printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", 			       jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);			spin_unlock_bh(&c->erase_completion_lock);			up(&c->alloc_sem);			BUG();		}	}	D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", raw->flash_offset &~3));	if (!raw->next_in_ino) {		/* Inode-less node. Clean marker, snapshot or something like that */		spin_unlock_bh(&c->erase_completion_lock);		jffs2_mark_node_obsolete(c, raw);		goto eraseit_lock;	}						     	inum = jffs2_raw_ref_to_inum(raw);	D1(printk(KERN_DEBUG "Inode number is #%u\n", inum));	spin_unlock_bh(&c->erase_completion_lock);	D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x, ino #%u\n", jeb->offset, raw->flash_offset&~3, inum));	inode = iget(OFNI_BS_2SFFJ(c), inum);	if (is_bad_inode(inode)) {		printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u\n", inum);		/* NB. This will happen again. We need to do something appropriate here. */		iput(inode);		up(&c->alloc_sem);		return -EIO;	}	f = JFFS2_INODE_INFO(inode);	down(&f->sem);	/* Now we have the lock for this inode. Check that it's still the one at the head	   of the list. */	if (raw->flash_offset & 1) {		D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));		/* They'll call again */		goto upnout;	}	/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */	if (f->metadata && f->metadata->raw == raw) {		fn = f->metadata;		ret = jffs2_garbage_collect_metadata(c, jeb, inode, fn);		goto upnout;	}		for (frag = f->fraglist; frag; frag = frag->next) {		if (frag->node && frag->node->raw == raw) {			fn = frag->node;			end = frag->ofs + frag->size;			if (!nrfrags++)				start = frag->ofs;			if (nrfrags == frag->node->frags)				break; /* We've found them all */		}	}	if (fn) {		/* We found a datanode. Do the GC */		if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {			/* It crosses a page boundary. Therefore, it must be a hole. */			ret = jffs2_garbage_collect_hole(c, jeb, inode, fn, start, end);		} else {			/* It could still be a hole. But we GC the page this way anyway */			ret = jffs2_garbage_collect_dnode(c, jeb, inode, fn, start, end);		}		goto upnout;	}		/* Wasn't a dnode. Try dirent */	for (fd = f->dents; fd; fd=fd->next) {		if (fd->raw == raw)			break;	}	if (fd && fd->ino) {		ret = jffs2_garbage_collect_dirent(c, jeb, inode, fd);	} else if (fd) {		ret = jffs2_garbage_collect_deletion_dirent(c, jeb, inode, fd);	} else {		printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%lu\n", raw->flash_offset&~3, inode->i_ino);		if (raw->flash_offset & 1) {			printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");		} else {			ret = -EIO;		}	} upnout:	up(&f->sem);	iput(inode); eraseit_lock:	/* If we've finished this block, start it erasing */	spin_lock_bh(&c->erase_completion_lock); eraseit:	if (c->gcblock && !c->gcblock->used_size) {		D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));		/* We're GC'ing an empty block? */		list_add_tail(&c->gcblock->list, &c->erase_pending_list);		c->gcblock = NULL;		c->nr_erasing_blocks++;		jffs2_erase_pending_trigger(c);	}	spin_unlock_bh(&c->erase_completion_lock);	up(&c->alloc_sem);	return ret;}static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 					struct inode *inode, struct jffs2_full_dnode *fn){	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);	struct jffs2_full_dnode *new_fn;	struct jffs2_raw_inode ri;	unsigned short dev;	char *mdata = NULL, mdatalen = 0;	__u32 alloclen, phys_ofs;	int ret;	if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {		/* For these, we don't actually need to read the old node */		dev =  (MAJOR(to_kdev_t(inode->i_rdev)) << 8) | 			MINOR(to_kdev_t(inode->i_rdev));		mdata = (char *)&dev;		mdatalen = sizeof(dev);		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));	} else if (S_ISLNK(inode->i_mode)) {		mdatalen = fn->size;		mdata = kmalloc(fn->size, GFP_KERNEL);		if (!mdata) {			printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");			return -ENOMEM;		}		ret = jffs2_read_dnode(c, fn, mdata, 0, mdatalen);		if (ret) {			printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);			kfree(mdata);			return ret;		}		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));	}		ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen);	if (ret) {		printk(KERN_WARNING "jffs2_reserve_space_gc of %d bytes for garbage_collect_metadata failed: %d\n",		       sizeof(ri)+ mdatalen, ret);		goto out;	}		memset(&ri, 0, sizeof(ri));	ri.magic = JFFS2_MAGIC_BITMASK;	ri.nodetype = JFFS2_NODETYPE_INODE;	ri.totlen = sizeof(ri) + mdatalen;	ri.hdr_crc = crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4);	ri.ino = inode->i_ino;	ri.version = ++f->highest_version;	ri.mode = inode->i_mode;	ri.uid = inode->i_uid;	ri.gid = inode->i_gid;	ri.isize = inode->i_size;	ri.atime = inode->i_atime;	ri.ctime = inode->i_ctime;	ri.mtime = inode->i_mtime;	ri.offset = 0;	ri.csize = mdatalen;	ri.dsize = mdatalen;	ri.compr = JFFS2_COMPR_NONE;	ri.node_crc = crc32(0, &ri, sizeof(ri)-8);	ri.data_crc = crc32(0, mdata, mdatalen);	new_fn = jffs2_write_dnode(inode, &ri, mdata, mdatalen, phys_ofs, NULL);	if (IS_ERR(new_fn)) {		printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));		ret = PTR_ERR(new_fn);		goto out;	}	jffs2_mark_node_obsolete(c, fn->raw);	jffs2_free_full_dnode(fn);	f->metadata = new_fn; out:	if (S_ISLNK(inode->i_mode))		kfree(mdata);	return ret;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -