📄 fig2_20.m
字号:
%
% This file generates the graphs of the characteristic
% impedance of the microstrip line and its effective dielectric
% constant as a function of width-to-height ratio w/h
% The corresponding figures in the text are 2-20 and 2-21
%
% Copyright (c) 1999 by P.Bretchko and R.Ludwig
% "RF Circuit Design: Theory and Practice"
%
clear all;
close all; % close all opened graphs
eps=[1 2 3 4.6 7 10 12]; % relative dielectric constants of the substrate
% for which graphs will be plotted
% define w/h ratio on a log scale
N=100; % number of sample points
wh_min=0.1;
wh_max=10;
wh=wh_min*((wh_max/wh_min).^((0:N)/N));
eps_fig=figure; % open new graph for relative dielectric constant
Z0_fig=figure; % open new graph for characteristic impedance
Zf=sqrt(4*pi*1e-7/8.85e-12);
for n=1:length(eps)
% compute effective dielectric constant
er=eps(n);
eps_eff_2_43=(er+1)/2+(er-1)/2*((1+12./wh).^(-0.5)+0.04*(1-wh).^2); % valid for w/h<1
eps_eff_2_45=(er+1)/2+(er-1)/2*(1+12./wh).^(-0.5); % valid for w/h>1
eps_eff=eps_eff_2_43.*(wh<1)+eps_eff_2_45.*(wh>=1);
figure(eps_fig);
semilogx(wh,eps_eff);
hold on;
% compute characteristic line impedance
Z0_2_42=Zf./(2*pi*(eps_eff.^0.5)).*log(8./wh+wh/4); % see equation (2.42)
Z0_2_44=Zf./(eps_eff.^0.5)./(1.393+wh+2/3*log(wh+1.444)); % see equation (2.44)
Z0=Z0_2_42.*(wh<1)+Z0_2_44.*(wh>=1);
figure(Z0_fig);
loglog(wh,Z0);
hold on;
end;
figure(eps_fig);
title('Effective dielectric constants for different relative dielectric constants');
xlabel('Line width-to-dielectric thickness ratio, w/d');
ylabel('Effective dielectric constant, {\epsilon_{eff}}');
axis([0.1 10 0 12]);
figure(Z0_fig);
title('Characteristic line impedance for different dielectric constants');
xlabel('Line width-to-dielectric thickness ratio, w/d');
ylabel('Characteristic line impedance Z_0, {\Omega}');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -