📄 fig2_22.m
字号:
%
% This file generates the graphs of the characteristic
% impedance for the microstrip line of two different
% metallization thicknesses
%
% Copyright (c) 1999 by P.Bretchko and R.Ludwig
% "RF Circuit Design: Theory and Practice"
%
clear all;
close all; % close all opened graphs
er=4.6; % relative dielectric constant of the substrate
h=25; % substrate thickness [in mil]
tt=[0 1.5]; % thickness of the conductor [in mil]
% define w/h ratio in log scale
N=100;
wh_min=0.12;
wh_max=10;
wh_initial=wh_min*((wh_max/wh_min).^((0:N)/N)); % unadjusted w/h ratio
figure; % open new graph for characteristic impedance
Zf=sqrt(4*pi*1e-7/8.85e-12);
for n=1:length(tt)
t=tt(n);
% adjust w/h ratio due to nonzero conductor thickness
if t>0
w=wh_initial*h;
x=h*(wh>1/(2*pi))+2*pi*w.*(wh<=1/(2*pi));
w_eff=w+t/pi*(1+log(2*x/t));
wh=w_eff/h;
else
wh=wh_initial;
end;
% compute effective dielectric constant
eps_eff_2_43=(er+1)/2+(er-1)/2*((1+12./wh).^(-0.5)+0.04*(1-wh).^2); % valid for w/h<1
eps_eff_2_45=(er+1)/2+(er-1)/2*(1+12./wh).^(-0.5); % valid for w/h>1
eps_eff=eps_eff_2_43.*(wh<1)+eps_eff_2_45.*(wh>=1);
% compute characteristic line impedance
Z0_2_42=Zf./(2*pi*(eps_eff.^0.5)).*log(8./wh+wh/4); % see equation (2.42)
Z0_2_44=Zf./(eps_eff.^0.5)./(1.393+wh+2/3*log(wh+1.444)); % see equation (2.44)
Z0=Z0_2_42.*(wh<1)+Z0_2_44.*(wh>=1);
semilogx(wh_initial,Z0);
hold on;
end;
title('Characteristic line impedance for different dielectric constants');
xlabel('Line width-to-dielectric thickness ratio, w/d');
ylabel('Characteristic line impedance Z_0, {\Omega}');
axis([0.1 10 0 150]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -