📄 fig1_5b.m
字号:
%
% This file generates the graph of the current density in
% in a copper conductor of radius a=1mm as a function of
% operating frequency.
%
% Copyright (c) 1999 by P.Bretchko and R.Ludwig
% "RF Circuit Design: Theory and Practice"
%
close all; % close all opened graphs
figure; % open new graph
a=0.001; % radius of the wire
N=100; % the number of steps along the radius
r=a*(0:N)/N; % define an array of values for sweeping the value of r
sigma_Cu=64.516e6; % conductivity of copper material
mu=4*pi*1e-7; % permeability of free space
order=[3:9]; % define order of frequencies at which distribution will be plotted
% 3 - kHz, 6 - MHz, 9 - GHz, etc.
colormap(lines);
color_map=colormap;
colormap('default');
for n=1:length(order)
% for each frequency
f=10^order(n); % compute frequency
pp=sqrt(-j*2*pi*f*mu*sigma_Cu); % define parameter p
Jz=pp*a/2*besselj(0,pp*r)/besselj(1,pp*a); % normalized current density
plot(r/1e-3,abs(Jz),'color',color_map(n,:)); % plot graph Jz vs. r for given frequency
hold on; % this prevents the graph from being overdrawn
end;
axis([0 1 0 2]); % set axes
title('Normalized current density in copper conductor');
xlabel('Radial distance from the center {\itr}, mm');
ylabel('Normalized current density {J_z/J_0_z}');
%print -deps 'fig1_5b.eps' % if uncommented -> saves a copy of plot in EPS format
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -