⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 choi_williams1.m

📁 该工具箱为时频分析中的一类重要变换,离散时频分布的工具箱,其中提供基本算法的程序.可直接应用
💻 M
字号:
function [tfd, t, f] = choi_williams1(x, fs, sigma)% choi_williams1 -- Compute samples of the (type I) Choi_Williams distribution.%%  Usage%    [tfd, t, f] = choi_williams1(x, fs, sigma)%%  Inputs%    x     signal vector.  Assumes that x is sampled at the Nyquist%          rate and uses sinc interpolation to oversample by a factor of 2.%    fs    sampling frequency of x (optional, default is 1 sample/second)%    sigma spread of the kernel in the ambiguity plane (optional, defaults%          to 1e4)%%  Outputs%    tfd  matrix containing the CW distribution of signal x (optional)%    t    vector of sampling times (optional)%    f    vector of frequency values (optional)%% If no output arguments are specified, then the CW distribution is % displayed using ptfd(tfd, t, f).%% Note that this implementation is only approximate since we are using% circular convolutions instead of linear convolutions, but I don't think% it is possible to implement this distribution exactly.  A little % oversampling and zero padding of the signal will help.% Copyright (C) -- see DiscreteTFDs/Copyright% check input argserror(nargchk(1, 3, nargin));if (nargin < 3)  sigma = 1e4;endif (nargin < 2)  fs = 1;end% compute the wigner distx = x(:);N = 2*length(x);w = wigner1(x);amb = fft2(w);% compute the kernel in the ambiguity planeP = N/2;for i = 0:P-1,  for j = 0:P-1,    ker(i+1,j+1) = -i^2*j^2/sigma;  endendker = exp(ker);ker = [ker; [1 zeros(1,P-1)]; flipud(ker(2:P,:))];ker = [ker [1; zeros(2*P-1,1)] fliplr(ker(:,2:P))];tfd = real(ifft2(amb.*ker));t = 1/(2*fs) * (0:N-1);f = -fs/2:fs/N:fs/2;f = f(1:N);if (nargout == 0)  ptfd(tfd, t, f);  clear tfdend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -