📄 wolter_convex.cpp
字号:
//---------------------------------------------------------------------------
#if !defined(__wolter_convex_cpp)
#define __wolter_convex_cpp
#include "wolter_convex.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
//Difinition of wolter_convex class 20010320
#include <math.h>
#pragma hdrstop
#include "wolter_convex.h"
////Construcor and destructor
wolter_convex::wolter_convex(){
};
wolter_convex::~wolter_convex(){
};
//equations for calcuration
inline int wolter_convex::AreaJudgement(double x,double y){
//儚乕僋偺僄儕傾傪敾掕偟丄僄儕傾ID偲偦偺揰偱偺Z嵗昗傪曉偡
//AreaID= 0 :c1
// 1 :1 soukyoku
// 2 :2 houbutu
// 3 :c2
int judge;
if (x<-130.){
return 0;
}else if (x<0){
return 1;
}else if (x<130){
return 2;
}else {
return 3;
}
};
inline double wolter_convex::GetZ( double x, double y){
double z;
//AreaID= 0 :c1
// 1 :1 soukyoku
// 2 :2 houbutu
// 3 :c2
switch (AreaJudgement(x,y)){
case 0: //c1
z = -100. + sqrt(9593.2447914 - powl(y,2));
break;
case 1: //1
z = -100. + sqrt(powl(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),2) -
powl(y,2));
break ;
case 2: //2
z = -100. + sqrt(powl(0. + sqrt(10000. + 1.0524861*x),2) - powl(y,2));
break ;
case 3: //c2
z = -100. + sqrt(10136.823193 - powl(y,2));
break ;
default:
z = 0;
};
return z;
//z=0 ,when x=y=0.
};
inline vector wolter_convex::GetPosition( double x, double y){
return ( vector( x, y, GetZ(x,y) ) );
};
inline double wolter_convex::gradX(double x, double y){
double dz;
//AreaID= 0 :c1
// 1 :1 soukyoku
// 2 :2 houbutu
// 3 :c2
switch (AreaJudgement(x,y)){
case 0: //c1
dz = 0;
break;
case 1: //1
dz = ((3.1576911 + 0.0004431519999999999*x)*
(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2))))/
(2.*sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2))*
sqrt(powl(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),2) -
powl(y,2)));
break ;
case 2: //2
dz = (0.52624305*(0. + sqrt(10000. + 1.0524861*x)))/
(sqrt(10000. + 1.0524861*x)*sqrt(powl(0. + sqrt(10000. + 1.0524861*x),2) - powl(y,2)));
break ;
case 3: //c2
dz = 0;
break ;
default:
dz = 0;
};
return dz;
//z=0 ,when x=y=0.
};
inline double wolter_convex::gradY(double x, double y){
double dz;
//AreaID= 0 :c1
// 1 :1 soukyoku
// 2 :2 houbutu
// 3 :c2
switch (AreaJudgement(x,y)){
case 0: //c1
dz = -y/sqrt(9593.2447914 - powl(y,2));
break;
case 1: //1
dz = -y/sqrt(powl(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),2) -
powl(y,2));
break ;
case 2: //2
dz = -y/sqrt(powl(0. + sqrt(10000. + 1.0524861*x),2) - powl(y,2));
break ;
case 3: //c2
dz = -y/sqrt(10136.823193 - powl(y,2));
break ;
default:
dz = 0;
};
return dz;
//z=0 ,when x=y=0.
};
inline double wolter_convex::gradXX(double x, double y){
double dz;
//AreaID= 0 :c1
// 1 :1 soukyoku
// 2 :2 houbutu
// 3 :c2
switch (AreaJudgement(x,y)){
case 0: //c1
dz = 0;
break;
case 1: //1
dz = (powl(3.1576911 + 0.0004431519999999999*x,2)*
powl(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),2))/
(4.*(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2))*
powl(powl(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),2) -
powl(y,2),1.5)) - powl(3.1576911 + 0.0004431519999999999*x,2)/
(4.*(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2))*
sqrt(powl(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),2) -
powl(y,2))) - (powl(3.1576911 + 0.0004431519999999999*x,2)*
(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2))))/
(4.*powl(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2),1.5)*
sqrt(powl(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),2) -
powl(y,2))) + (0.0002215759999999999*
(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2))))/
(sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2))*
sqrt(powl(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),2) -
powl(y,2)));
break ;
case 2: //2
dz = (0.2769317476733025*powl(0. + sqrt(10000. + 1.0524861*x),2))/
((10000. + 1.0524861*x)*powl(powl(0. + sqrt(10000. + 1.0524861*x),2) - powl(y,2),
1.5)) - 0.2769317476733025/
((10000. + 1.0524861*x)*sqrt(powl(0. + sqrt(10000. + 1.0524861*x),2) - powl(y,2))) -
(0.2769317476733025*(0. + sqrt(10000. + 1.0524861*x)))/
(powl(10000. + 1.0524861*x,1.5)*
sqrt(powl(0. + sqrt(10000. + 1.0524861*x),2) - powl(y,2)));
break ;
case 3: //c2
dz = 0;
break ;
default:
dz = 0;
};
return dz;
//z=0 ,when x=y=0.
};
inline double wolter_convex::gradYY(double x, double y){
double dz;
//AreaID= 0 :c1
// 1 :1 soukyoku
// 2 :2 houbutu
// 3 :c2
switch (AreaJudgement(x,y)){
case 0: //c1
dz = -powl(y,2)/powl(9593.2447914 - powl(y,2),1.5) - 1/sqrt(9593.2447914 - powl(y,2));
break;
case 1: //1
dz = -powl(y,2)/powl(powl(0. + sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),
2) - powl(y,2),1.5) + 1/
sqrt(powl(0. - sqrt(10000. + 3.1576911*x + 0.0002215759999999999*powl(x,2)),2) -
powl(y,2));
break ;
case 2: //2
dz = -powl(y,2)/powl(powl(0. + sqrt(10000. + 1.0524861*x),2) - powl(y,2),1.5) +
1/sqrt(powl(0. - sqrt(10000. + 1.0524861*x),2) - powl(y,2));
break ;
case 3: //c2
dz = -powl(y,2)/powl(10136.823193 - powl(y,2),1.5) - 1/sqrt(10136.823193 - powl(y,2));
break ;
default:
dz = 0;
};
return dz;
//z=0 ,when x=y=0.
};
// This is the normal vector of surface on the point(x,y).
// This is toward the inside of wolter_convex.
// This.length is 1.
vector wolter_convex::NormalVector ( double x, double y){
return ( vector( -gradX(x,y), -gradY(x,y), 1).normalize() ); //OK 980520
};
vector wolter_convex::NormalVector ( vector position){
return ( NormalVector( position.getX(), position.getY() ) );
};
////GradientVector////////////////////////////////////////////
// This is one of tangential vactors on the tangential plane.
// This is toward direction which has the largest gradient.
// This length is 1.
vector wolter_convex::GradientVector(double x, double y){
double gx = gradX( x,y);
double gy = gradY( x,y);
return ( vector( gx, gy, gx*gx+gy*gy ).normalize() );
};
vector wolter_convex::GradientVector( vector position){
return( GradientVector( position.getX(), position.getY() ) );
};
////NoGradientVector///////////////////////////////////////////
// This is one of tangential vactors on the tangential plane.
// This is toward direction which has no gradient.
//// This length will be 1,
//// and this Z-coordinate will be Zero.
vector wolter_convex::NoGradientVector(double x,double y){
return( NormalVector(x,y)%GradientVector(x,y) );
};
vector wolter_convex::NoGradientVector(vector position){
return( NormalVector(position)%GradientVector(position) );
};
int wolter_convex::WriteFaceName(ofstream& fout){
fout << "(Face name is : wolter_convex);" << endl;
return(1);
};
int wolter_convex::WriteParameters(ofstream& fout){
return(1);
};
void wolter_convex::SetParameter(TStringList *str)
{
for (int i=0; i<str->Count; i++){
//isConcave
};
face::SetFaceParameter(str);
};
void wolter_convex::GetParameter(TStringList *str)
{
str->Add(AnsiString("---wolter_convex parameter(s)---"));
str->Add(AnsiString("FaceType=wolter_convex"));
face::GetFaceParameter(str);
};
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -